Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электронтранспортная цепь см Перенос электронов

    Позднее были получены экспериментальные данные о существовании еще одной формы энергии, также используемой клеткой для совершения разного рода работы. Открытие этой формы энергии принадлежит английскому биохимику Питеру Митчеллу (Р. Mit hell), разработавшему в 60-х гг. хемиосмотическую теорию энергетического сопряжения, объясняющую превращение (трансформацию) энергии, освобождающейся при электронном транспорте, в энергию фосфатной связи АТФ. П. Митчелл постулировал, что при переносе электронов по окислительно-восстановительной цепи, локализованной в мембранах определенного типа, называемых энергопреобразующими, или сопрягающими, происходит неравномерное распределение Н+ в пространстве по обе стороны мембраны (рис. 25). Предложенная им модель предусматривает определенное расположение переносчиков электронов в сопрягающей мембране, например ЦПМ, которые могут быть погружены в глубь мембраны или локализованы у наружной и внутренней ее поверхностей, так что образуют петли в цепи переноса электронов. В каждой петле (у прокариот электронтранспортные цепи в сопрягающих мембранах могут формировать разное число петель ) два атома водорода движутся от внутренней стороны ЦПМ к наружной с помощью переносчика водорода (например, хинона). Затем два элект-рона возвращаются к внутренней стороне мембраны с помощью со- [c.86]


    Изучение у прокариот электронтранспортных цепей, функционирующих в процессах дыхания и фотосинтеза I и II типов, выявило принципиальное сходство между ними. В обеих системах электронного транспорта есть флавопротеины, хиноны, цитохромы и белки, содержащие негемовое железо, позволяющие переносить электроны вниз по термодинамической лестнице. Таким образом, по существу обе электронтранспортные цепи являются окислительными. Разнообразие в их организации обнаружено при более детальном изучении и выражается как в широком наборе доноров и акцепторов электронов, так и в конкретной организации самих цепей химическом строении переносчиков, принадлежащих к одному типу, их наборе, расположении и т.д. [c.97]

    Дыхательные электронтранспортные цепи состоят из большого числа локализованных в мембране переносчиков, с помощью которых электроны передаются или вместе с протонами, т.е. в виде атомов водорода, или без них. Компонентами цепи, локализованными в мембране, являются переносчики белковой (флавопротеины, Ре8-белки, цитохромы) или небелковой (хиноны) природы. Флавопротеины и хиноны осуществляют перенос атомов водорода, а Ре5-белки и цитохромы — электронов. [c.360]

    Поскольку — химические частицы, несущие положительный заряд, неравномерное их накопление по обе стороны мембраны приводит к возникновению не только химического (концентрационного) градиента этих частиц, но и ориентированного поперек мембраны электрического поля (суммарный положительный заряд, где происходит накопление Н , и отрицательный заряд по другую сторону мембраны). Таким образом, при переносе электронов на ЦПМ возникает трансмембранный электрохимический градиент ионов водорода, обозначаемый символом АЦн+ и измеряемый в вольтах (В, мВ), который состоит из электрического (трансмембранная разность электрических потенциалов A jr) и химического (концентрационного) компонентов (фадиент концентраций — АрН). Измерения показали, что на сопрягающих мембранах прокариот при работе дыхательных и фотосинтетических электронтранспортных цепей Арн+ достигает 200—250 мВ, при этом вклад каждого компонента непостоянен. Он зависит от физиологических особенностей организма и условий его культивирования. [c.101]

Фиг. 95. Стационарный трансмембранный протонный градиент, поддерживаемый фотосинтетическим переносом электронов по электронтранспортной цепи. Фиг. 95. Стационарный трансмембранный <a href="/info/101869">протонный градиент</a>, поддерживаемый <a href="/info/1745106">фотосинтетическим переносом электронов</a> по электронтранспортной цепи.

    Пластохинон выполняет в системе переноса электронов несколько специфических функций (рис. 10.13). Его значительно больше, чем других компонентов цепи, и он служит электронным буфером , который обеспечивает гладкое функционирование цепи даже при сильных колебаниях в распределении квантов света между двумя фотосистемами. Он способен также связывать между собой несколько электронтранспортных цепей и таким образом повышать надежность системы. Например, если какой-либо реакционный центр II не функционирует, то пластохинон может обеспечить работу связанного с ним реакционного центра I за счет электронов, поступающих из другого реакционного центра II. В результате реакционный центр I не будет испытывать недостатка в электронах. Другая возможная роль пластохинона упоминалась ранее (разд. 10.4.1), когда рассматривалось распределение фотосистем в тилакоидах. Из-за пространственного разделения разных фотосистем необходим механизм, обеспечивающий поток электронов между ними, и предполагают, что в этом механизме главную роль играет пластохинон. [c.346]

    Окисление происходит в результате переноса электронов через локализованную в мембране дыхательную электронтранспортную цепь, состоящую из набора переносчиков, и приводит в большинстве случаев к восстановлению молекулярного кислорода до Н2О. Таким образом, в процессе дыхания молекулы одних веществ окисляются, других — восстанавливаются, т. е. окислительно-восстановительные процессы в этом случае всегда межмолекулярны. [c.96]

    С появлением в атмосфере О2 возникла возможность переноса на него электронов. Чтобы этот перенос мог быть связан с получением энергии, необходимо было сформировать электронтранспортные цепи с определенным образом ориентированными в [c.347]

    Было заманчивым предположить, что в хлоропластах перенос электронов по электронтранспортной цепи тоже сопряжен с образованием АТФ. [c.186]

    Труднее судить о величине Р/2е и о числе участков сопряжения в циклической электронтранспортной цепи, так как единственным продуктом циклического фотофосфорилирования является АТФ. Однако опыты с добавлением некоторых веществ, избирательно взаимодействующих с отдельными компонентами электронного транспорта у бактерий, позволили заключить о существовании двух участков сопряжения при переносе электронов от ферредоксина к цитохрому Bg и на участке цитохром Bg — цитохром f. Обсуждается вопрос о третьем участке сопряжения у высших растений — при переносе электронов от Z к ферредоксину. [c.188]

    При набухании наблюдается нарушение функций хлоропластов, например, перенос электронов между отдельными компонентами электронтранспортной цепи. В набухших хлоропластах не осуществляется фотоокисление эндогенного цитохрома реакционным центром фотосистемы 1 до тех пор, пока в суспензию не будет добавлена сахароза и за счет этого не произойдет некоторое сжатие белков ламелл. [c.219]

    Еще один тип дыхания, где конечным акцептором служит органическое вещество, называется фумаратным дыханием. К фума-ратному дыханию способны практически все микроорганизмы, имеющие электронтранспортную цепь с сукцинатдегидрогеназой. Это энтеробактерии, вибрионы и пропионовые бактерии 2[Н ] + + фумарат -> сукцинат. При этом цепь переноса электронов очень короткая, при восстановлении 1 М фумарата образуется 1 М АТФ, так как есть только один пункт сопряжения, где происходит окислительное фосфорилирование. К фумаратному дыханию способны также некоторые факультативно анаэробные черви (As aris, Fas iola, Areni ola). Это, по-видимому, аналог молочнокислого брожения в мышцах млекопитающих. [c.143]

Рис. 9-55. Окисление муравьиной кислоты фумаровой кислотой при участии цепи переноса электронов, запасающей энергию. Современные бактерии, в том числе Е. oli, могут перекачивать протоны через свою плазматическую мембрану при помощи этой электронтранспортной системы, связанной с мембраной. Окислительно-восстановительный потенциал пары муравьиная кислота-СО2 равен -420 мВ, а пары фумаровая кислота-янтарная кислота -ЬЗО мВ, Рис. 9-55. <a href="/info/198401">Окисление муравьиной кислоты</a> <a href="/info/1396">фумаровой кислотой</a> при <a href="/info/526331">участии цепи переноса</a> электронов, запасающей энергию. Современные бактерии, в том числе Е. oli, могут перекачивать <a href="/info/1592783">протоны через</a> свою плазматическую мембрану при помощи этой электронтранспортной системы, связанной с мембраной. <a href="/info/159316">Окислительно-восстановительный потенциал</a> <a href="/info/381931">пары муравьиная кислота</a>-СО2 равен -420 мВ, а пары <a href="/info/1396">фумаровая кислота</a>-янтарная кислота -ЬЗО мВ,
    Размножение бактерий, использовавших в качестве источника углерода и восстановителей предобразованные органические молекулы, не могло продолжаться долго, так как этот источник пополнялся в результате геохимических процессов очень медленно. Истощение запасов сбраживаемых органических веществ, вероятно, привело к возникновению бактерий, способных создавать углеводы из СО2. Используя уже имевшиеся у них части электронтранспортной цепи, фотосинтезирующие бактерии улавливали с помощью своей единственной фотосистемы лучистую энергию и направляли ее на синтез VADPH, необходимый для фиксации углерода. Последующее появление более сложной фотосинтезирующей цепи переноса электронов у цианобактерий дало возможность использовать в качестве донора электронов при образовании NADPHeody, [c.484]


    Необходимо заметить, что поиски предшественников АТФ не приводили к желаемому результату. Прямых доказательств участия того или иного макроэргического соединения в синтезе АТФ получено не было. Это привело к тому, что стали считать высокоэнергетическим предшественником не соединение, а состояние Хе хлоропластов и митохондрий. В 1961 году Митчелл предложил пшотезу химио-осмотического сопряжения , в основе которой лежало представление о создании, в результате переноса электронов по электронтранспортной цепи, значительного трансмембранного протонного градиента, за счет которого и происходит синтез АТФ. Применительно к фотосинтезу эта гипотеза была особенно подробно разработана Ягендорфом. [c.207]

    Существенным для понимания всех аспектов переноса электронов в мембранах, а также сопряженных с ним процессов является вращательная и латеральная диффузия не только подвижных переносчиков, но и отдельных комплексов и их агрегатов. Подвижность комплексов приводит к тому, что теряет смысл понятие единой структурной электронтранспортной цепи, так как стехиометрия взаимодействия комплексов определена лишь в среднем и может меняться при изменении внешних условий. Если регулируемая условиями внешней среды латеральная асимметрия в распределении комплексов переносчиков достаточно хорошо установлена для фотосинтетического аппарата высших растений, то, несомненно, аналогичные процессы регулирования пространственной обособленности отдельных реакций могут происходить и у фотосинтезрфующих бактерий и митохондрий. Динамическая организация электронного транспорта, проявляющаяся в процессах агрегации— дезагрегации как отдельных переносчиков электронов с комплексами, так и самих комплексов, приводит к быстрому и высокоэффективному переносу электронов (внутри комплексов), увеличивает надежность функционирования цепи переноса электронов, обеспечивая возможность замены вышедших из строя элементов, а также их встраивание в процессе б иогенеза и, кроме того, обеспечивает возможность эффективных способов регуляции транспорта электронов за счет изменения степени агрегации комплексов, их пространственной обособленности и взаимного положения в мембране. Асимметричная латеральная и трансмембранная организация комплексов в мембране может направленно регулироваться такими факторами, как липидный состав мембраны, соотношение липид/белок, микровязкость, энзиматическая модификация белков, ионный состав среды и др. [c.286]

    Однако есть и существенное отличие. Внутренняя мембрана хлоропластов не образует крист и не содержит в себе цепи переноса электронов. Фотосинтезирующая поглощающая свет система, электронтранспортная цепь и АТР-синтетаза находятся в третьей мембране, формирующей группу уплощенных дисковидных мешочков-тилакоидов (рис. 9-37). Внутренние полости тилакои-дов сообщаются между собой, образуя третий внутренний компартмент хлоропласта, называемый тилакоидным пространством. Тилакоидное пространство отделено от стромы непроницаемой для ионов тилакоидной мембраной. [c.36]

    В хлоропластах протекают реакции фотосинтеза, т. е. богатые энергией электроны, поступающие в цепь переноса электронов, образуются в результате воздействия света на хлорофилл, а не при окислении питательных веществ. Таким образом, хлоропласты-это органеллы, в которых вещества главным образом синтезируются, а не распадаются. Здесь имеются электронные потоки двух типов 1) нециклический поток, осуществляемый при участии двух последовательно связанных фотосистем, которые переносят электроны с воды на ЫАОР с образованием ЫАОРН, причем этот процесс сопряжен с синтезом АТР и 2) циклический поток, который поддерживает лишь одна фотосистема, передающая электроны по замкнутой петле в этом случае образуется только АТР. Оба электронтранспортных процесса происходят в мембране тилакоида и приводят к переносу протонов в тилакоидное пространство. В результате обратного тока протонов через АТР-синтетазу в строме у поверхности тилакоида образуется весь АТР хлоропластов. [c.47]

    Цитохромы, железо-серные центры и атомы меди способны переносить одновременно только один электрон. Между тем каждая молекула NADH отдает два электрона и каждая молекула О2 должна принять четыре электрона при образовании молекул воды. В электронтранспортной цепи имеется несколько электронсобирающих и электронраспределяющих участков, где согласовывается разница в числе электронов. Так, например, цитохромоксидазный комплекс принимает от молекул цитохрома с по отдельности четыре электрона и в конечном итоге передает их на одиу связанную молекулу О2, что ведет к образованию двух молекул воды. На промежуточных ступенях этого процесса два электрона, прежде чем перейти к участку, связывающему кислород, поступают в гем цитохрома а и связанный с белком атом меди, ua. В свою очередь участок связывания кислорода содержит еще один атом меди и гем цитохрома аз. Однако механизм образования двух молекул воды в результате взаимодействия связанной молекулы О2 с четырьмя протонами в точности не известен. [c.453]

    Размножение бактерий, использовавших в качестве источника углерода и восстановителей предобразованные органические молекулы, не могло продолжаться длительное время, так как этот источник пополнялся в результате геохимических процессов очень медленно. Истощение запасов сбраживаемых органических веществ привело к возникновению фотосинтезирующих бактерий, способных создавать углеводы из СО2 Примитивные клетки, сходные с современными зелеными серобактериями, стали использовать определенные участки уже имевшейся у них электронтранспортной цепи, чтобы улавливать световую энергию и направлять ее на синтез сильных восстановителей, необходимых для фиксации углерода. Последующее появление более сложной фотосинтетической цепи переноса электронов у цианобактерий привело к тому, что в атмосферу начали поступать большие количества кислорода. При этом в результате распространения жизни на обширных пространствах снова стали накапливаться восстановленные органические вещества. В условиях обилия кислорода и органических молекул электронтранспортная цепь адаптировалась для переноса электронов с NADH на кислород по мере выработки у многих бактерий эффективного аэробного метаболизма все больше освобождавшейся энергии превращалось в биологически полезные формы. Точно такой же аэробный метаболизм характерен для митохондрий эукариотических клеток, и сейчас получено уже много данных в пользу того, что митохондрии произошли от ранее независимых бактерий. [c.53]

    Электронтранспортная цепь водородных бактерий по составу аналогична митохондриальной (см. рис. 94). Большинство из них относится к облигатным аэробам. Однако среди облигатных аэробов преобладают виды, тяготеющие к низким концентрациям О2 в среде. Особенно чувствительны к О2 водородные бактерии, растущие хемолитоавтотрофно, а также в условиях фиксации молекулярного азота. Последнее объясняется инактивирующим действием молекулярного кислорода на гидрогеназу и нитрогеназу — ключевые ферменты метаболизма Hj и фиксации N2. Для некоторых водородных бактерий показана способность расти и в анаэробных условиях, используя в качестве конечного акцептора электронов вместо О2 нитраты, нитриты или окислы железа. Примером факультативно аэробных водородных бактерий может служить Para o us denitri ans, у которого в аэробных условиях работает электронтранспортная цепь, аналогичная митохондриальной, а в отсутствие О2 электроны с помощью соответствующих редуктаз переносятся на N0 и NOj, восстанавливая их до N2 (рис. 98, В). Однако большая часть факультативно аэробных водородных бактерий способна к восстановлению нитратов только до нитритов. [c.385]

    Если водородные бактерии содержат обе формы гидрогеназы, функции между ними четко разделены. В случае отсутствия у водородных бактерий цитоплазматической гидрогеназы возникает проблема получения восстановителя при хемолитоавтотрофном способе их существования. Она решается с помощью механизма обратного переноса электронов на НАД . При функционировании только цитоплазматической гидрогеназы она выполняет обе функции часть восстановительных эквивалентов с НАД Нз поступает в дыхательную цепь, другая расходуется по каналам конструктивного метаболизма. Таким образом, из всех хемолитоавтотрофных эубактерий только водородные бактерии с помощью определенной формы гидрогеназы могут осуществлять непосредственное восстановление НАД окислением неорганического субстрата. В электронтранспортную цепь электроны, следовательно, могут поступать с НАД Нз или включаться на уровне переносчиков с более положительным окислительно-восстановительным потенциалом. С этим связан энергетический выход процесса функционирование в дыхательной цепи 3 или 2 генераторов Ар1н+- [c.386]

    Одним из интересных свойств карбоксидобактерий является сам факт использования ими окиси углерода, служащей специфическим ингибитором терминальных оксидаз, таких как цитохромы типа а (см. рис. 94). Для некоторых карбоксидобактерий показана устойчивость к содержанию в атмосфере до 90 % СО. В то же время в электронтранспортных цепях этих организмов не обнаружено необычных цитохромов. В качестве механизмов, приводящих к СО-устойчивости этих бактерий, обсуждаются быстрая детоксикация СО с помощью окисляющего фермента индукция ответвляющихся от основного пути СО-нечувствительных терминальных оксидаз, через которые и осуществляется перенос электронов на О2 повышенный синтез компонентов электронтранепортной цепи пространственное разобщение процесса окисления СО и цитохромоксидаз, чувствительных к ней. [c.388]

    На основании выявленной чувствительности к вышеуказанным ингибиторам, Арнон пришел к выводу об общности части ферментативного аппарата циклического фотофосфорилирования с окислительным фосфорилированием. Подавление окислительного фосфорилирования антимицином А вызывается тем, что этот ингибитор блокирует перенос электрона между цитохрсмами Ъ и с в электронтранспортной цепи в митохондриях. Но аналогии высказывается предположение о возможном действии антимицина А на участке фотосинтетической цепи транспорта электронов между цитохромами и f и этим аргументируется участие цитохромов в циклическом пути переноса электрона. Прямых доказательств участия этих цитохромов в циклическом переносе электрона нет. [c.209]

    Последний участник циклической электронтранспортной цепи — медьсодержащий белок пластоциа-пин — располагается между цитохромом и хлорофиллом а фотохимического центра (пигментом Р700). Характерные особенности этого белка Е = + 0,37 в, М = 21 ООО, изоэлектрическая точка меньше 4. Одна молекула пластоцианина содержит два атома меди, каждый из которых, по-видимому, связан с сульф-гидрильпой группой остатка цистеина в белке. Медь может вымываться из белка подкисленным раствором сульфата аммония, что сопровождается потерей способности пластоцианина участвовать в переносе электронов. Функции белка восстанавливаются с помощью раствора сульфата меди. Свое название этот белок получил в связи с тем, что в окисленном состоянии имеет синий цвет, в то время как восстановленная форма зеленоватого цвета. Окисленная форма имеет три характерные полосы в спектре поглощения в области 597 нм (главная), 460 нм и 780 нм. Один грамм-атом меди пластоцианина приходится на 300— 400 молекул хлорофилла. [c.162]

    У бактериохлорофилла Pggo меньший окислительный потенциал (E = + 0,2 в) по сравнению с Pggo (реакционным центром в системе циклического электронного транспорта). В соответствии с этим Z имеет больший восстановительный потенциал (E = — 0,6 в), по сравнению с Z. Последнее разрешает участие в электронтранспортной цепи ферредоксина (EO = = —0,43 в). От ферредоксина электроны с помощью растворимой ферредоксин-НАД-редуктазы (представляющей собой флавопротеид) переносятся на НАД с образованием восстановленной формы (НАДНа), которая и используется в дальнейшем в процессах клеточного метаболизма (фиг. 78). [c.164]

    Основным принципиальным отличием нециклической электронтранспортной цепи у этих растений считается последовательное участие в переносе электронов двух фотохимических центров или, как принято называть в последнее время, двух фотосистем. Каждая фотосистема включает в себя не только фотохимический реакционный центр, но и совокупность определенных обслуживающих его оксидоредуктаз. Фотосистема 1 имеет тот же реакционный центр Р700, что и система циклического электронного транспорта, а фотосистема 2 включает хлорофилл а, имеющий красный максимум поглощения в более коротковолновой области [c.165]

    Перенос электронов по электронтранспортной цепи и фотофосфорилирование тесно связаны с поглощением квантов света и условиями освещения, но с ними больше коррелирует первый процесс. Так, например, при переходе темнота — свет интенсивность переноса электронов в хлоропластах быстро достигает уровня, обусловленного величиной освещенности- В то же время для циклического фотофосфорилирования характерна лаг-фаза (фиг. 89) продолжительностью около 5 минут или даже больше (при подавленной с помощью ДХММ фотосистеме 2). Грант и Уотли (1967) объясняют этот эффект тем, что в темноте происходит окисление компонентов циклического электронного транспорта, а для эффективного образования АТФ система циклического фотофосфорилирования должна быть в определенной [c.194]

    Изучению интенсивности переноса электронов по электронтранспортной цепи и интенсивности фотофос- [c.199]

    Последовательность событий в хлоропластах, приводящих к синтезу АТФ, отражена в фиг. 94—96. Предполагается, что в суспензии изолированных хлоропластов или in vivo pH внутри и вне хлоропластов одинакова в темноте. При включении света начинается электронный поток по системе переносчиков, встроенных в ламеллы хлоропластов. С переносом электронов сопряжен перенос протонов Н+ из окружающей среды внутрь хлоропластов или тилакоидов, если они выделены из хлоропластов. Обязательным условием такого переноса следует считать присутствие, помимо переносчиков, присоединяющих и отдающих только электроны, других компонентов электронтранспортной цепи, восстановление и окисление которых предполагает присоединение и отдачу не только электронов, но и протонов (Н+ -f е = Н). Эти комцо-ненты могут присоединять Н+ на одной стороне мембраны и при окислении отдавать их на другую сторону. В результате этого векторного процесса происходит [c.207]

    В том случае, когда в хлоропластах осуществляется перенос электронов по электронтранспортной цепи, но не происходит фотофосфорилирование (например, при действии разобщителей), наблюдается фотоиндуцированное набухание хлоропластов. Ю. Г. Молотков-ский считает, что набухание связано не непосредственно с электронным потоком, а с ЗН- группами белков, непосредственно не участвующих в переносе электронов. [c.219]

    Считать окончательнс 1. В настоящее время очень оживленно десЗа-тируются вопросы о взаимоотношении мевду обеими фотосистемами, функционируют ли они последовательно, как изображено на рис.42 или параллельно и независимо друг от друга. Много работ посвящено уточнению участвующих переносчиков в фотосинтетической электронтранспортной цепи, последовательности их действия и другие. Неврерывно появляющиеся новые данные могут внести существенные коррективы в наши представления о переносе электрона в процессе фотосинтеза. [c.170]

    Специальные опыты позволили выявить участие пероксидазы в переносе электронов по электронтранспортной цепи митохондрий. В анаэробных условиях пероксидаза способствовала транспорту электронов от НАД-Н к красителям (диафоразная активность) и увеличивала скорость восстановления цитохрома с митохондриями. В этих случаях фермент действовал как типичная анаэробная дегидрогеназа. [c.208]

    Метод урезонансной спектроскопии позволяет регистрировать высокочастотные движения (т < 10 с) с амплитудами 0,02 нм в фотосинтетических мембранах и РЦ. Измерение параметров флуоресценции и фосфоресценции хромофорных меток (см. 2 гл. X) в тех же температурных областях позволило оценить подвижность молекул среды в диапазоне времен Тс от 1 до 10 с. Оказалось, что, как и в случае применения методов ЯГР и ЭПР, температурная зависимость для эффективности прямого переноса электрона в системе Qa Qв — звена электронтранспортной цепи, локализованного вблизи поверхности трансмембранного белка РЦ — лучше коррелирует с быстрыми движениями в поверхностных слоях препаратов с характерными временами Тс 10 с. В то же время изменения скорости обратной реакции — рекомбинация Р+ и (P+Q PQa) процесса, протекающего во внутренних структурах РЦ, лучше коррелирует с появлением в образцах при размораживании низкочастотных движений с Тс 10 с. В температурном интервале 130-190 К во внутренних частях мембранных белков также наблюдаются движения с временами Тс 1 с, которые регистрируются по сдвигу спектров собственной фосфоресценции ароматических аминокислот. [c.376]

    Общий путь, по котором) митохондрии, хлоропласты и даже бактерии преобразуют энергию для биологических целей, основан на процессе, получившем название хемиосмотического сопряжения. Этот процесс начинается с того, что электроны, богатые энергией , передаются от сильных доноров этих частиц по цепи из переносчиков электронов, встроенных в мембрану, непроницаемую для ионов. При таком переносе по электронтранспортной цепи электроны, которые были либо возбуждены солнечным светом, либо извлечены при окислении питательных веществ, последовательно переходят на все более низкие энергетические уровни. Часть высвобождаемой энергии используется для перемещения протонов с одной стороны мембраны на другую, в результате чего на мембране создается электрохимический протонный градиент. За счет энергии этого градиента протекают реакции, катализируемые ферментами, встроенными в ту же мембрану (рис. 7-1). В митохогвдриях и хлоропластах большая часть энергии используется для превращения ADP и Pi в АТР, хотя некоторая ее доля расходуется на транспорт специфических метаболитов в органеллу и из нее. В отличие от этого у бактерий электрохимический градиент служит столь же важным непосредственным источником энергии, как и синтезируемый с его помощью АТР благодаря энергии градиента осуществляются не только многие транснортные процессы, но и быстрое вращение бактериальных жгутиков, перемещающих клетку (разд. 12.5.4). [c.430]

    I видимо, для этого нужно столько энергии, сколько требуется для переноса электрона с воды на NADP . Кроме того, использование двух отдельных следующих друг за другом фотосистем позволяет связать их электронтранспортной цепью, в которой энергия электронов будет достаточна для перемещения через тилакоидную мембрану (или плазматическую мембрану цианобактерий), и тем самым -направить часть возбуждаемых светом электронов на синтез АТР. [c.474]


Смотреть страницы где упоминается термин Электронтранспортная цепь см Перенос электронов: [c.484]    [c.177]    [c.180]    [c.230]    [c.168]    [c.219]    [c.170]    [c.197]    [c.200]    [c.214]    [c.107]    [c.233]    [c.255]   
Биохимия природных пигментов (1986) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Цепи с переносом



© 2025 chem21.info Реклама на сайте