Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кальвина цикл

    Первым продуктом включения СОд в цикле Кальвина является [c.55]

    Суммарная реакция воостановления СОг в цикле Кальвина может быть описана уравнением [c.477]

    Вспомним теперь материал гл. 11, где говорилось, что в цикле Кальвина для превращения СОг в сахар необходимы как NADPH, так и АТР. Насколько нам известно, стехиометрия реакции определяется урав-лением (11-16). Помимо двух молекул NADPH, требуемых для восстановления одной молекулы СОг, нужны еще три молекулы АТР. Уместно спросить, откуда же они берутся. Z-схема дает на это простой ответ. Падение потенциала в цепи переноса электронов, соединяющей верхний конец фотосистемы II с нижним концом фотосистемы I, вполне достаточно для синтеза АТР в результате переноса электронов. По всей вероятности, на каждую пару электронов, проходящих по этой цепи переносчиков, синтезируется только одна молекула АТР. Поскольку, согласно стехиометрии уравнения (11-16), на каждую молекулу NADPH приходится Р/г молекулы АТР, должен существовать еще ка-кой-то механизм синтеза АТР. Кроме того, в хлоропластах, несомненно, протекает и множество других АТР-зависимых процессов, так что реальные потребности в АТР, генерируемом в ходе фотосинтеза, могут быть значительно выше. [c.39]


    Сущность темповых реакций процесса фотосинтеза была раскрыта благодаря исследованиям американского физиолога Кальвина (цикл Кальвина). Успех работы, проведенной Кальвином и его сотрудниками, определялся широким применением новых методов исследования. [c.131]

    Каким образом снижается интенсивность фотодыхания С4-растений Данные о включении СО2 в оксалоацетат привели вначале к предположению о существовании альтернативного циклу Кальвина процесса восстановления СО2, однако дальнейшие исследования показали, что секрет С4-растений лежит в наличии у них механизма повышения концентрации СО2, ослабляющем конкуренцию со стороны О2. Все виды С4-растений имеют характерную внутреннюю анатомию листа сосудистые пучки охватывает одиночный плотный слой темно-зеленых [c.58]

    Бактерии, потребляющие соединения, содержащие один атом углерода, способны окислять их до СОг и получать при этом энергию, используя на последней стадии формиатдегидрогеназу (гл. 9, разд. В,3). Они обладают также способностью использовать СО2 в качестве исходного продукта для биосинтетических целей через цикл Кальвина. Было, однако, показано, что для некоторых видов характерны и другие пути ассимиляции одноуглеродных соединений. Например, псевдомонады, исследованные Куэли с сотрудниками [15], превращают одноуглеродные соединения в ацетат (через промежуточные продукты, связанные с тетрагидрофолевой кислотой) и СО2 через сериновый путь , показанный на рис. 11-5. Это циклический процесс, в ходе которого одна молекула формальдегида (присоединенного к H4F0I) плюс одна молекула СОг превращаются в ацетат. Регенерирующимся субстратом является Н I [c.478]

    Образование М. в растениях связано с ассимиляцией ими Oj и происходит в результате фотосинтеза. Молекула СО2 присоединяется к 1,5-дифосфату D-рибулозы в хлоропластах с участием фермента рибулозодифосфат-карбокси-лазы, а образующаяся в результате З-фосфо-О-глицериновая к-та (ф-ла VII) путем дальнейшего восстановления и конденсаций дает D-глюкозу (см. Глюконеогенез) или D-фруктозу при этом регенерируется молекула рибулозодифосфата (цикл Кальвина)  [c.139]

    Спектры электронного парамагнитного резонанса (ЭПР) и спиновые метки, т. 1, стр. 348 Использование изотопных меток при изучении цикла трикарбоновых кислот, т. 2, стр. 322 " С и цикл Кальвина, т. 2, стр. 477 Метод радиоиммунологического анализа, т. 3, стр. 318 [c.380]

    Схемы биосинтеза основных протеиногенных аминокислот достаточно многоступенчаты, но их можно свести к двум основным этапам — это формирование соответствующих окси- и оксокислот и аминирование последних до аминокислот В качестве исходных при синтезе аминокислот, как правило, выступают Сз-С -окси- и оксокислоты, образующиеся в фотосинтетическом цикле Кальвина (схема 4.3.3). [c.79]


    Дополнение 11-А Си цикл Кальвина [c.477]

    Рнеорг" неорганический фосфат). Первая реакция сама по себе не является самопроизвольной, так как она требует затраты свободной энергии в 226 кДж на моль глюкозы, однако необходимая свободная энергия поставляется второй реакцией, и в целом процесс является самопроизвольным с движущей силой 322 кДж. Темповые реакции небезразличны к источнику молекул НАДФ Н и АТФ, которые требуются для их протекания. Хотя в настоящее время их источником в зеленых растениях являются световые реакции, не исключено, что темповые реакции старше по возрасту и первоначально приводились в действие молекулами НАДФ Н и АТФ из других источников. Механизм темновых реакций известен под названием цикла Кальвина-Бенсона и в некотором смысле аналогичен циклу лимонной кислоты. Сначала диоксид углерода соединяется с молекулой-перенос-чиком, рибулозодифосфатом. После ряда стадий (некоторые из них вы- [c.335]

    Движущей силой цикла Кальвина - Бенсона являются световые реакции. Солнечный свет поглощается молекулами хлорофилла (см. рис. 20-21), в которых имеется кольцо сопряженных атомов углерода с делокализованными электронами, окружающее атом магния. Молекула хлорофилла одного типа расположена в фотоцентре, или в ловушке, где и осуществляется химическая реакция, а другие хлорофиллы и родственные сопряженные молекулы окружают фотоцентр и играют роль антенн , поглощающих фотоны света и передающих электронное возбуждение к молекулам фотоцентра. [c.336]

    Темиовые реакции синтеза глюкозы, которые в конце концов привели к циклу Кальвина-Бенсона. Всякий организм, способный использовать внешний источник энергии для получения своих собственных молекул с большой свободной энергией, которые могут использоваться впоследствии, имеет огромное преимущество над другими организмами, лишенными подобных свойств. Первым внешним источником энергии не обязательно должен был быть солнечный свет. [c.336]

    Поскольку при образовании углеродсодержащих продуктов фотосинтеза главным процессом по всей видимости, служит включение СО2 через цикл Кальвина (гл. 11, разд. Г,2), источником восстанавливающих эквивалентов должен быть процесс расщепления, шести молекул Воды с одновременным выделением Од. В противном, случае уравнение (13-25) не будет выполнено. Тем не менее ймеютсц данные, что непосредственным источником кислорода при образовании О2 являются ионы бикарбоната [114]. Более поздние эксперименты показывают, что 0 из бикарбоната не включается в Од, но бикарбонат все же стимулирует выделение кислорода [115], действуя, по всей вероятности, как аллостерический эффектор. [c.51]

    С количественной точки зрения значительно более важным путем, обеспечивающим фиксацию СО2, является восстановительный пентозофосфатный путь, известный под названием цикла Кальвина (дополнение 11-А). Эта последовательность реакций имеет место в хлоропластах зеленых растений, а также в хемоавтотрофных бактериях. Цикл Кальвина представляет собой по существу путь обращения окислительного пентозофосфатного цикла (рис. 9-8), в процессе которого происходит полное окисление глюкозы при помощи МАОР+ (с использованием одной молекулы АТР, необходимой для превращения исходной молекулы глюкозы в глюкозо-6-фосфат)  [c.475]

    Наиболее характерные для хлоропластов ферменты катализируют фотосинтетическую фиксацию двуокиси углерода — это так называемый цикл Кальвина. Ферментом карбоксилиро-вания является рибулозобисфосфаткарбоксилаза/оксигеназа. Этот фермент обладает многими весьма примечательными свойствами [26], в частности очень слабой энзиматической активностью по сравнению с активностями других ферментов цикла Кальвина. Кинетическое равновесие устанавливается очень высоким содержанием рибулозобисфосфаткарбоксилазы/оксигеназы, которая может составлять 80 % общего количества белков стромы. [c.242]

    Последовательность реакций, в которых диоксид углерода связывается в процессе фотосинтеза, была впервые предложена в 50-х годах Кальвином ее часто называют циклом Кальвина или фотосинтетическим циклом восстановления углерода (см. схему 4). В отличие от световой реакции, свойственной только фотосинтезирующим тканям, синтез углеводов из диоксида углерода имеет много общего с реакциями, используемыми для синтеза углеводов в нефотосинтезирующих организмах. Тем не менее поражают масштабы этого процесса в зеленых растениях по самым минимальным оценкам растения ежегодно связывают около 35-10 кг углерода, причем для получения каждого грамма связанного углерода растение должно переработать более 6250 л воздуха. Хотя 99 % диоксида углерода, усваиваемого растениями из воздуха, связывается в процессе фотосинтетических реакций на свету, существуют и процессы темнового карбоксилирования [2], отличающиеся высокой скоростью и вносящие значительный вклад в общее количество связываемого углерода некоторых растений, в особенности суккулентов (сем. rassula eae). [c.398]

    При этом восстанавливается никотинамидная часть НАДФ. Далее НАДФН2 и АТФ участвуют в биохимических циклах темновых реакций, важнейшим из которых является углеводный цикл Кальвина (получившего Нобелевскую премию за этот цикл работ), который схематично может быть записан так  [c.741]


Смотреть страницы где упоминается термин Кальвина цикл: [c.753]    [c.618]    [c.113]    [c.386]    [c.633]    [c.54]    [c.55]    [c.58]    [c.59]    [c.60]    [c.46]    [c.80]    [c.191]    [c.478]    [c.90]   
Биохимия Том 3 (1980) -- [ c.475 , c.478 ]

Общая органическая химия Т.11 (1986) -- [ c.398 ]

Микробиология Издание 4 (2003) -- [ c.0 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.633 ]

Основы биохимии Т 1,2,3 (1985) -- [ c.702 , c.703 , c.704 , c.709 ]

Стратегия биохимической адаптации (1977) -- [ c.0 ]

Флеш-фотолиз и импульсный радиолиз Применение в биохимии и медицинской химии (1987) -- [ c.283 ]

Микробиология Изд.2 (1985) -- [ c.251 ]

Биохимия Т.3 Изд.2 (1985) -- [ c.196 , c.197 , c.198 ]




ПОИСК







© 2025 chem21.info Реклама на сайте