Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярный кислород в метаболизме прокариот

    Отрицательное действие О2 на азотфиксацию связано с восстановительной природой процесса. Возникшая первоначально у анаэробных прокариот, получающих энергию за счет брожения, способность к азотфиксации проявилась и в фуппах эубактерий с бескислородным фотосинтезом. Благоприятные условия для нее обеспечивались анаэробным типом метаболизма этих фупп. И только цианобактерии столкнулись с проблемой функционирования в клетке двух процессов, один из которых имеет восстановительную природу, а другой сопровождается выделением такого сильного окислителя, как О2. Возникла необходимость защиты или изолирования процесса азотфиксации от молекулярного кислорода. [c.317]


    Известны прокариоты, для метаболизма которых О2 не нужен, т. е. энергетические и конструктивные процессы у них происходят без участия молекулярного кислорода. Такие организмы получили название облигатных анаэробов. К ним относятся метан-образующие архебактерии, сульфатвосстанавливающие, маслянокислые и некоторые другие эубактерии. До сравнительно недавнего времени считали, что облигатные анаэробы могут получать энергию только в процессе брожения. В настоящее время известно много облигатно анаэробных прокариот, которые произошли от аэробов в результате вторичного приспособления к анаэробным условиям, приведшего к потере способности использовать О2 в качестве конечного акцептора электронов в процессе дыхания. Такие облигатные анаэробы получают энергию в процессах анаэробного д ы X а н и я, т. е. переноса электронов по цепи переносчиков на СО2, SO4, фумарат и другие акцепторы. [c.128]

    Таким образом, можно только предполагать, что механизмы нейтрализации молекулярного кислорода на различных этапах эволюции взаимодействия с ним клеток были неодинаковы. На каком-то этапе возникли ферментные реакции, катализирующие включение Оз в метаболизм прокариот. [c.344]

    Резкое возрастание масштабов взаимодействия прокариот с О2 при функционировании метаболизма аэробного типа делает неэффективными неферментативные пути устранения Н2О2. Для разложения перекиси водорода, образующейся в возросших количествах, необходимы специальные ферменты, повышающие скорость разложения Н2О2 на несколько порядков. Это обеспечивается каталазой и пероксидазой. Таким образом, в условиях активного взаимодействия клеток с молекулярным кислородом, делающего возможным аэробную жизнь, система ферментной защиты от его токсических эффектов сформирована с участием супероксиддисмутазы, каталазы и пероксидазы в качестве необходимых компонентов (рис. 96). [c.302]

    Молекулярный кислород в метаболизме прокариот. ... Формирование у прокариот оксидазного механизма взапмодейстзи с молекулярным кислородом, сопряженного с запасанием энергии О происхождении обратимой протонной АТФазы Растворимые системы переноса электронов на Ог у первично ана [c.376]

    Азот (наряду с углеродом, водородом и кислородом) является одним из четырех основных элементов, участвующих в построении клетки. В расчете на сухие вещества его содержится приблизительно 10%. Природный азот бывает в окисленной, восстановленной и молекулярной формах. Подавляющее больщинство прокариот усваивают азот в восстановленной форме. Это соли аммония, мочевины, органические соединения (аминокислоты или пептиды). Окисленные формы азота, главным образом нитраты, также могут потребляться многими прокариотами. Так как азот в конструктивном клеточном метаболизме используется в форме аммиака, нитраты перед включением в органические соединения должны быть восстановлены. [c.85]


    Как видно из разобранного выше процесса гомоферментативного молочнокислого брожения, у этой группы прокариот молекулярный кислород не включается в энергетический метаболизм, но они способны расти в присутствии Ог, т. е. являются аэротолерантными анаэробами. В клетках этих бактерий в значительном количестве содержатся флавиновые ферменты, с помощью которых происходит восстановление молекулярного кислорода до Н2О2. Из-за неспособности молочнокислых бактерий синтезировать гемовую группу у них отсутствует ка-талаза — фермент, катализирующий разложение перекиси водорода, поэтому последняя может накапливаться в клетке. Существующие механизмы защиты от молекулярного кислорода и его производных у этой группы прокариот изложены в гл. 11. [c.187]

    Молекулярный кислород в метаболизме прокариот [c.344]

    В отношении к молекулярному кислороду среди фототрофных про-жариот на одном полюсе располагаются строгие анаэробы, на другом — Организмы, у которых Ог образуется внутриклеточно. Многие виды — факультативные анаэробы, есть аэротолерантные формы и микроаэро- филы. У фотосинтезирующих прокариот молекулярный кислород часто выступает как могучий фактор, регулирующий их метаболизм в аэробных условиях у пурпурных, зеленых бактерий и галобактерий репрессируется синтез фотосинтетических пигментов и тем самым уничтожается основа для фототрофного способа существования. [c.290]


Смотреть страницы где упоминается термин Молекулярный кислород в метаболизме прокариот: [c.128]    [c.98]    [c.258]    [c.334]   
Смотреть главы в:

Микробиология Издание 4 -> Молекулярный кислород в метаболизме прокариот




ПОИСК





Смотрите так же термины и статьи:

Кислород молекулярный

Метаболизм

Метаболизм кислород



© 2025 chem21.info Реклама на сайте