Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фотосинтез бескислородный

    Отрицательное действие О2 на азотфиксацию связано с восстановительной природой процесса. Возникшая первоначально у анаэробных прокариот, получающих энергию за счет брожения, способность к азотфиксации проявилась и в фуппах эубактерий с бескислородным фотосинтезом. Благоприятные условия для нее обеспечивались анаэробным типом метаболизма этих фупп. И только цианобактерии столкнулись с проблемой функционирования в клетке двух процессов, один из которых имеет восстановительную природу, а другой сопровождается выделением такого сильного окислителя, как О2. Возникла необходимость защиты или изолирования процесса азотфиксации от молекулярного кислорода. [c.317]


    Все пурпурные бактерии характеризуются сходным строением и функционированием фотосинтетического аппарата. Они могут расти на свету в анаэробных условиях, осуществляя фотосинтез бескислородного типа. Однако по целому ряду физиологических особенностей, в том числе и по использованию разных соединений в качестве донора электронов при фотосинтезе, между представителями пурпурных бактерий обнаружены значительные различия. Поэтому на основании ряда физиологических признаков группу подразделяют на пурпурные серные и несерные бактерии. [c.298]

    В то же время для ряда цианобактерий показана способность расти на свету в строго анаэробных условиях. Это относится к видам, осуществляющим фотосинтез бескислородного типа, которых в соответствии с принятой классификацией следует отнести к факультативным анаэробам. (Фотосинтез любого типа по своей природе — анаэробный процесс. Это хорошо видно в случае фотосинтеза бескислородного типа и менее очевидно для кислородно- [c.316]

    Фотосинтез, сопровождающийся вьщелением О2, свойственный всем эукариотным организмам и двум группам эубактерий (цианобактериям и прохлорофитам), возможен в диапазоне от 300 до 750 нм. Для эубактерий, способных к осуществлению бескислородного фотосинтеза, диапазон излучений, обеспечивающих фотосинтетическую активность, увеличивается в сторону более длинных волн, захватывая ближнюю ИК-область для зеленых бактерий вплоть до 840 нм, пурпурных — до 920 нм, а для некоторых представителей этой группы — до 1100 нм. Спектры активности фототаксиса у эубактерий совпадают со спектрами фотосинтетической активности, поскольку фоторецепторами в обоих случаях служат одни и те же пигменты. У экстремально галофильных архебактерий рода НаЬЬасГепит пигменты, запускающие фотосинтез и обеспечивающие фототактическую реакцию, различны и активны в диапазоне длин волн примерно от 450 до 600 нм (см. гл. 18). [c.131]

    В то же время для ряда цианобактерий показана способность расти на свету в строго анаэробных условиях. Это относится к видам, осуществляющим фотосинтез бескислородного типа, которых в соответствии с принятой классификацией следует отнести к факультативным анаэробам. (Фотосинтез любого типа по своей природе — анаэробный процесс. Это хорошо видно в случае фотосинтеза бескислородного типа и менее очевидно для кислородного фотосинтеза.) Для некоторых цианобактерий показана принципиальная возможность протекания темновых анаэробных процессов (анаэробное дыхание, молочнокислое брожение), однако низкая активность ставит под сомнение их роль в энергетическом метаболизме цианобактерий. Зависимые и не зависимые от О2 способы получения энергии, обнаруженные в группе циано-. бактерий, суммированы в табл. 37. [c.279]


    В течение длительного времени зеленые бактерии принимали за зеленые или сине-зеленые водоросли (цианобактерии). Начало их изучения как бактерий связано с именами С. Н. Виноградского и К. ван Ниля. Эта небольшая группа эубактерий, осушествляющих фотосинтез бескислородного типа, разделена на две подгруппы. Зеленые серобактерии — строгие анаэробы и облигатные фототрофы, способные расти на среде с Н28 или молекулярной серой в качестве единственного донора электронов при окислении сульфида до молекулярной серы последняя всегда откладывается вне клетки. [c.302]

    Что представляют собой сформировавшиеся у эубактерий, осуществляющих бескислородный фотосинтез, пути переноса электронов от экзогенных доноров Окислительно-восстановительные потенциалы органических и неорганических соединений, используемых в качестве экзогенных доноров электронов, таковы, что эти соединения не могут осуществлять темновое восстановление НАД . В то же время они достаточно отрицательны, чтобы обеспечить допирование электронов на молекулы бактериохлорофилла реакционного центра.  [c.285]

    Итогом двух фотохимических реакций является создание ассимиляционной силы — НАДФ Н2 и АТФ. Конечные продукты фотосинтеза в этом случае в принципе аналогичны продуктам, образующимся при бескислородном фотосинтезе, за исключением того, что в последнем случае восстановитель находится в форме НАД Н2. [c.289]

    Известно 5 групп эубактерий, способных преобразовывать световую энергию в химическую с помощью хлорофилла. Фотосинтез, осуществляемый ими, делится на 2 типа не сопровождающийся выделением молекулярного кислорода (бескислородный фотосинтез) и сопровождающийся выделением О2 (кислородный фотосинтез). В соответствии с этим все фотосинтезирующие эубактерии в IX издании Определителя бактерий Берги предложено разделить на две таксономические группы в ранге классов Апоху-рЬо1оЬас1епа и ОхурЬо1оЬас1епа. Эубактерии, осуществляющие бескислородный фотосинтез, на основании таких признаков, как пигментный состав и тонкое строение фотосинтетического аппарата, делятся на 3 группы пурпурные, зеленые бактерии и гелиобактерии. Эубактерии, фотосинтез которых сопровождается выделением О2, включают 2 группы организмов цианобактерии и прохлорофиты. В основу деления положены те же признаки (см. табл. 21 — 23). Критерии, определяющие там, где это возможно, деление на таксоны более низкого ранга, даны при характеристике каждой из выделенных групп. [c.297]

    Пурпурные и зеленые бактерии осуществляют бескислородный фотосинтез. У них пигменты только бактериохлорофиллы. [c.188]

    Все пурпурные бактерии характеризуются сходным строением и функционированием фотосинтетического аппарата. Они могут расти на свету в анаэробных условиях, осуществляя фотосинтез бескислородного типа. [c.256]

    Анаэробное дыхание НАД(Ф) Н2 S поддерживает жизнедеятельность некоторых цианобактерий, способных к бескислородному фотосинтезу [c.318]

    Группа 18. Фототрофные бактерии, осуществляющие бескислородный фотосинтез. В эту группу отнесены фотосинтезирующие эубактерии, характеризующиеся специфическим набором пигментов и особым типом фотосинтеза пигменты представлены различными видами бактериохлорофилла и каротиноидов фотосинтез не сопровождается вьщелением кислорода. [c.175]

    У прокариот известны три типа фотосинтеза I — зависимый от бактериохлорофилла бескислородный фотосинтез, осуществляемый группами зеленых, пурпурных бактерий и гелиобактерий II — зависимый от хлорофилла кислородный фотосинтез, свойственный цианобактериям и прохлорофитам III — зависимый от бактериородопсина бескислородный фотосинтез, найденный у экстремально галофильных архебактерий. В основе фотосинтеза I и II типа лежит поглощение солнечной энергии различными пигментами, приводящее к разделению электрических зарядов, возникновению восстановителя с низким и окислителя с высоким окислительно-восстановительным потенциалом. Перенос электронов между этими двумя компонентами приводит к выделению свободной энергии. В фотосинтезе III типа окислительно-восстановительные переносчики отсутствуют. В этом случае энергия в [c.96]

    Экзогенные доноры электронов в бескислородном фотосинтезе [c.285]

    Со сформированными электронтранспортными цепями, локализованными в мембране, содержащими все типы переносчиков и имеющими прямое отнощение к получению клеткой энергии, мы уже встречаемся у рассмотренных в гл. 13 и 14 анаэробных эубактерий с наиболее просто организованной энергетикой хе-мотрофного (брожение) и фототрофного (бескислородный фотосинтез) типа некоторых пропионовокислых бактерий, всех фотосинтезирующих пурпурных и зеленых бактерий. В клеточных мембранах этих организмов локализованы и функционируют сопряженные с электронным транспортом АТФ-синтазы. [c.348]

    У цианобактерий обнаружена способность к бескислородному фотосинтезу, связанная с отключением II фотосистемы при сохранении активности I фотосистемы (см. рис. 75, В). В этих условиях у них возникает потребность в иных, чем Н2О, экзогенных донорах электронов. В качестве последних цианобактерии могут использовать некоторые восстановленные соединения серы (H2S, НагЗгОз), Н2, ряд органических соединений (сахара, кислоты). Так как поток электронов между двумя фотосистемами прерывается, синтез АТФ сопряжен только с циклическим электронным транспортом, связанным с I фотосистемой. Способность к бескислородному фотосинтезу обнаружена у многих цианобактерий из разных групп, но активность фиксации СО2 за счет этого процесса низка, составляя, как правило, несколько процентов от скорости ассимиляции СО2 в условиях функционирования обеих фотосистем. Только некоторые цианобактерии могут расти за счет бескислородного фотосинтеза, например Os illatoria limneti a, вьще-ленная из озера с высоким содержанием сероводорода. Способность цианобактерий переключаться при изменении условий с одного типа фотосинтеза на другой служит иллюстрацией гибкости их светового метаболизма, имеющей важное экологическое значение. [c.314]


    Поток солнечных лучей встретил в первичной бескислородной атмосфере Земли пары воды, которые, вероятно, были первым тормозом в распространении лучистой энергии. Фотодиссоциация молекул воды (которой иногда приписывают важную роль в формировании окислительной атмосферы наряду с фотосинтезом) поглотила значительную часть энергии, освободила водород и стала исходным пунктом для множества радикальных реакций. [c.138]

    После того как в атмосфере появился свободный кислород — в качестве побочного продукта фотосинтеза у растений, — и бактериям, и сине-зеленым водорослям поневоле пришлось иметь с ним дело. Чтобы защищать себя от губительного воздействия этого элемента, некоторые бактерии просто отступили в бескислородные биотопы, например в донный ил озер. Они остались анаэробами. Другие бактерии выработали специальные механизмы, позволившие им справиться с проблемами, возникшими вследствие появления кислорода. [c.142]

    Мы смогли приблизительно оценить возраст нашей современной атмосферы. Бескислородная атмосфера просуществовала примерно до периода, удаленного от нас на 1,8 млрд. лет, а кислородная атмосфера сформировалась около 1,4 млрд. лет назад. Значит, за промежуток времени между этими двумя датами произошел переход от бескислородной к кислородной атмосфере. Мы видели также, что Земля — единственная планета Солнечной системы, в атмосфере которой имеется значительное количество свободного кислорода. Мы приняли, что кислород этот имеет биогенное происхождение он создан (и продолжает создаваться) организмами, способными к органическому фотосинтезу, например зелеными растениями. Далее, мы узнали, что жизнь существует на нашей планете уже гораздо более 1,8 млрд. лет, а значит, она присутствовала уже в условиях бескислородной атмосферы. Более того, судя по молекулярным ископаемым, уже тогда были организмы, способные проводить органический фотосинтез. [c.325]

    У фотосинтезирующих прокариот известно больше десяти видо] хлорофиллов (рис. 72 табл. 21). Хлорофиллы двух групп прокариот осуществляющих бескислородный фотосинтез (пурпурные и зеленые [c.226]

    У несерных пурпурных бактерий развиты контакты с молекулярным кислородом. У них имеются ферментные системы защиты от О2. Все несерные пурпурные бактерии способны расти хемот-рофно в микроаэробных условиях, хотя не все из них могут переносить атмосферное содержание О2. При концентрации 62 от 0,5 до 5 % фотосинтез и окислительный метаболизм могут функционировать одновременно. Молекулярный кислород у несерных пурпурных бактерий (как и у всех эубактерий, осуществляющих бескислородный фотосинтез) выступает как мощный фактор, регулирующий их метаболизм. Уже в достаточно низких концентрациях [c.300]

    О. limneti a, осуществляющая активный фотосинтез бескислородного типа, оказалась также способной в темноте в анаэробных условиях при наличии в среде серы осуществлять перенос элект- [c.314]

    Фотосинтез бескислородного типа Н28, N328203, Н2, органические соединения НАДФ , ферредоксин обеспечивает рост некоторых изученных видов у большинства — снабжает энергией, необходимой для поддержания жизнедеятельности [c.318]

    В течение длительного времени зеленые бактерии принимали за зеленые или сине-зеленые водоросли (цианобактерии). Начало их изучения как бактерий связано с именами С. Н. Виноградского и К. ван Ннля. Сейчас эта небольшая группа прокариот, осуществляюпхих фотосинтез бескислородного типа, на основании особенностей пигментного состава и строения фотосинтетического аппарата выделена в порядок hlorobiales и насчитывает более 15 видов, объединенных в 8 родов. [c.260]

    О. limneti a — цианобактерия, способная к активному фотосинтезу бескислородного типа, оказалась также способной в анаэробных темновых условиях при наличии в среде серы осуществлять перенос электронов на молекулярную серу, восстанавливая ее до сульфида. Полное окисление молекулы глюкозы сопровождается образованием 5—9 молекул сульфида. Таким образом, анаэробное дыхание также может поставлять цианобактериям в темноте энергию. Однако, насколько широко распространена такая способность среди цианобактерий, неизвестно. Не исключено, что она свойственна культурам, осуществляющим бескислородный фотосинтез. [c.277]

    Фотосинтез, сопровождающийся выделением О2, свойственный всем эукариотным организмам и двум группам прокариот (цианобактерии-и прохлорофиты), возможен в диапазоне от 300 до 750 нм. Для прокариот, способных к осуществлению бескислородного фотосинтеза, диапазон излучений, обеспечивающих фотосинтетическую активность, увеличивается в сторону более длинных волн, захватывая ближнюк> ИК-область для зеленых бактерий вплоть до 840 нм, пурпурных бактерий — до 920 нм, а для некоторых представителей этой группы — до-ИОО нм. Спектры активности фототаксиса у прокариот- совпадают со-спектрами фотосинтетической активности. [c.100]

    Органические соединения и жизнь возникли и развивались в бескислородной восстановительной первичной атмосфере Земли, возможно состоявшей первые два миллиарда лет из небольших количеств водорода, аммиака, азота и паров воды. Свободный кислород появился на Земле, по-видимому, в результате фотодиссоциации воды и процесса фотосинтеза. Энергию для синтеза органических соединений давали ультрафрюлетовое излучение Солнца (Земля была без атмосферы)— 4,2-10 кдж в год, электрические разряды (молнии)— 5,04-10 кдж в год, ионизирующая радиация (преимущественно К), тепловое излучение Солнца и вулканов. [c.6]

    Анаэробный метаболизм. Многие цианобактерии живут в слоях воды, содержащих в значительных концентрациях (примерно 5 мМ/л) сероводород. Исследования, проведенные на Os illatoria limneti a, показали, что фотосистема II в присутствии сероводорода выключается, и начинает протекать иной, бескислородный (аноксигенный) фотосинтез по схеме [c.133]

    Вильштеттер и Штоль [3] наблюдали, что некоторые виды растений (например. Pelargonium) почти полностью теряют способность к фотосинтезу уже после 2-часового пребывания в бескислородной атмосфере у других видов (например. y lamen) фотосинтез прекращается только после 15-часовой анаэробной инкубации. Для возвращения к аэробному состоянию достаточно незначительной остаточной способности к фотосинтезу обработанных листьев. При этом условии торможение устраняется после нескольких часов экспозиции на свету. Вильштеттер и Штоль замечают, что когда это автокаталитическое восстановление фотосинтеза достигнуто, парциальное давление кислорода все еще очень невысоко — значительно ниже, чем требуется для дыхания. Этот факт, а также длительность анаэробной обработки, необходимой для торможения, привели Вильштеттера и Штоля к мнению, что фотосинтез требует скорее насыщения Еислород-акцепторного комплекса клетки, чем присутствия свободного кислорода в атмосфере. Они высказали мнение, что этот комплекс медленно диссоциирует в бескислородной атмосфере и регенерируется нри фотосинтезе раньше, чем кислород успеет выделиться из клеток. [c.334]

    Для понимания роли света в добиологической эволюции важным является тезис об отсутствии молекулярного кислорода в атмосфере первобытной Земли жизнь возникла и сделала свои первые шаги в бескислородной среде. Как уже отмечалось в гл. IV, кислород обязан своим происхождением деятельности фотосинтезирующих организмов. Условиями появления фотосинтеза были серия изменений в биохимических механизмах живой системы, накопление углекислоты в окружающей среде, создание хлорофилла, переносчиков электронов и всего фотосиптетического аппарата. Помимо данных геохимии о составе первобытной атмосферы (например, восстановительный характер древних пород) существуют весомые, чисто биологические аргументы в пользу зарождения и достаточно длительной эволюции жизни в бескислородной среде. В самом деле, в организмах протекает множество биохимических реакций и превращений, отличительная особенность которых состоит в том, что они осуществляются так, чтобы любым способом избежать участия молекулярного кислорода. Как отмечают Хочачка и Самеро, основной скелет промежуточного обмена носит строго анаэробный характер метаболические реакции, протекающие при прямом участии кислорода, немногочисленны и к тому же представляют собой позднейшие эволюционные пристройки к уже способному функционировать анаэробному каркасу . Предполагается, что первый кислород атмосферы был своеобразным ядом для организмов, и они стремились его дезактивировать. [c.352]

    Но вернемс к вопросу об аэробном и анаэробном, кислородном и бескислородном образе жизни. Как мы уже знаем, микроорганизмы используют гораздо больше способов получения энергии, чем высшие органшмы. Прежде всего рассмотрим фотосинтез и дыхание. Оба эти прцесса являются аэробными в прямом смысле слова опи возможны лишь в контакте с атмосферой. Но фотосинтез может быть и бескислородным, и кислородным, тогда как дыхание — обязательно кюлородный процесс. [c.147]

    В стратифицированных водоемах в хемоклине у верхней границы гиполимниона создаются аноксигенные условия и всегда наблюдается максимальная концентрация литоавтотрофных хемосинтезирующих бактерий. Используя энергию окисления восстановленных неорганических продуктов распада органического вещества, таких, как водород, метан, сероводород, аммоний, а также восстановленных форм железа, они усваивают углерод углекислоты и синтезируют биополимеры клетки. Ниже верхней границы гиполимниона при благоприятных условиях бурно развиваются анаэробные фототрофные бактерии, главным образом несерные пурпурные, которые тяготеют к нижним горизонтам кислородных вод, и пурпурные серобактерии, тяготеющие к верхним горизонтам сероводородных зон, Еще глубже при более высоких концентрациях H2S и полном отсутствии кислорода обитают анаэробные зеленые серобактерии. Образующаяся пурпурными бактериями в процессе фотосинтеза элементарная сера и сульфаты используются сульфатредукторами. Продукция биомассы бактерий в этих слоях достигает 0,3 г/м в сутки, а их общая биомасса - до 3 г/м . В слое интенсивного хемосинтеза у верхней границы бескислородной зоны всегда скапливается значительное количество зоопланктона. [c.111]

    Выделение кислорода в процессе органического фотосинтеза привело к весьма противоречивым реакциям и результатам. С одной стороны, это, как мы только что видели, должно было привести к развитию противокислородных защитных механизмов. С другой стороны, выделение кислорода в каком-либо месте могло привести к его локальному накоплению и к раннему, локальному же, развитию кислородолюбивых организмов еще в те времена, когда большинство организмов жило в бескислородной среде. Как это случилось, неизвестно. Все же мы приведем один возможный механизм защиты от кислорода и попробуем представить себе, как в так называемых кислородных оазисах развились механизмы использования кислорода. [c.156]

    Однако такой вывод надо признать если не совершенно ошибочным, то, во всяком случае, необоснованным. Сходство изотопного состава говорит только о сходной степени фракционированности изотопов, т. е. о принципиальном сходстве процессов образования анализируемых веществ. Можно не сомневаться в том, что в неорганическом фотосинтезе, происходившем в условиях бескислородной атмосферы, кинетика играла не меньшую роль, чем в фотосинтезе органическом, протекающем в современных условиях. Итак, мы пришли к отрицательному заключению сходство соотношения стабильных изотопов углерода в современных зеленых растениях и в биогенных отложениях с изотопным составом углерода древнейших осадочных пород еще не доказывает, что эти породы образовались биогенным путем. Это справедливо и для соотношения стабильных изотопов других элементов. [c.307]

    Но со временем и этот барьер был преодолен. Мы приняли, что это случилось после образования золото-урановых рифов формации Блайнд-Ривер, но до образования песчаников Дала, самых древних красноцветных толщ. Возраст отложений Блайнд-Ривер оценивается в 1,8 млрд. лет, а песчаников Дала — в 1,45 млрд. лет. На диаграмме принято, что это событие произошло после пинокинского орогенеза (точка d на фиг 99). Как уже говорилось, достижение точки Пастера можно считать концом существования первичной бескислородной атмосферы, которую мы предварительно определили как атмосферу с содержанием свободного кислорода не выше 0,01 современного. При таком содержании Ог неорганический фотосинтез органических молекул становится невозможным и, таким образом, кончается сосуществование преджизни с ранней жизнью, продолжавшееся со времени появления ранней жизни (между точками 6 и с) до точки е, т. е. около 2 млрд. лет. [c.357]

    Значит, пока продолжала существовать первичная бескислородная атмосфера, продолжался и неорганический синтез соединений преджизни. Жизнь, как свидетельствуют ископаемые остатки, тоже существовала в этот период, но она не могла еще выйти на поверхность Земли и скрывалась в почве или под водой. Следовательно, хотя преджизнь и жизнь тогда сосуществовали, они занимали разные местообитания. Органические вещества не исчезли с поверхности Земли и тогда, когда появились уже автотрофные организмы, ведущие органический фотосинтез. Не вымерли тогда и примитивные гетеротрофные организмы. Вероятнее всего, хемо- и фото органо трофы продолжали существовать все это время, питаясь соединениями преджизни, попадавшими в местообитания ранней жизни. [c.387]


Смотреть страницы где упоминается термин Фотосинтез бескислородный: [c.264]    [c.306]    [c.315]    [c.360]    [c.371]    [c.45]    [c.213]    [c.84]    [c.151]    [c.213]   
Микробиология Издание 4 (2003) -- [ c.297 , c.314 ]

Микробиология Изд.2 (1985) -- [ c.253 , c.276 ]




ПОИСК





Смотрите так же термины и статьи:

Фотосинтез



© 2024 chem21.info Реклама на сайте