Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фиксация азота симбиотическими бактериями

    Фиксация азота симбиотическими бактериями [c.395]

    При комнатной температуре азот реагирует только с литием, давая Ь1зН, и усваивается азотфиксирующими бактериями, как свободно живущими, так и симбиотическими, на корневых узелках клевера, гороха и т. д. Механизм фиксации азота этими бактериями полностью еще не изучен, хотя полагают, что конечным продуктом восстановления является аммиак. Начальная атака по азоту, несомненно, должна включать координацию молекулы у некоторого участка, вероятно, атома переходного металла есть некоторые сведения, что спектры поглощения определенных энзиматических систем подтверждают образование комплекса. Тем не менее механизм биологической фиксации азота остается одной из наиболее важных нерешенных проблем химии. [c.163]


    Способностью к фиксации азота обладают самые разные бактерии, и многие из них в принципе могут использоваться как удобрения. Однако до тех пор, пока не будет показано, что бактериальные удобрения столь же эффективны, как и химические, вряд ли удастся преодолеть консерватизм производителей сельскохозяйственной продукции и изменить используемые в настоящее время подходы. Например, вторая по экономической значимости и по занимаемым площадям сельскохозяйственная культура в США — соя — формирует симбиотические отношения с бактерией Bradyrhizobium japoni um. В [c.307]

    Молекулярные основы фиксации азота всесторонне исследовались на К. pneumoniae, которая может служить модельной системой для изучения симбиотических бактерий семейств Rhizobium и Bradyrhizobium. Детально охарактеризована нитрогеназа, азотфиксирующий фермент. Молекулярно-генетические исследования показали, что фиксация азота бактериями — это сложный процесс в нем участвует семь координированно регулируемых оперонов, кодирующих в общей сложности 20 разных белков. Это делает пока невозможным создание с помощью методов генной инженерии растений, которые могли бы сами усваивать азот, и других азотфик-сирующих бактерий. [c.327]

    Вступая в симбиотические отношения с растениями, штаммы Rhizobium стимулируют образование на их корнях клубеньков, где и происходит размножение этих бактерий и фиксация азота. Разумно бьию предположить, что, если с помощью методов генной инженерии удастся создать бактерии, способствующие образованию большего количества клубеньков, конкурентоспособность инокулирующих штаммов Rhizobium в борьбе за место на корнях растений-симбионтов повысится по сравнению со штаммами дикого типа. К сожалению, обнаружилось, что в образовании клубеньков участвует множество разных генов, и эта сложность затрудняет проведение соответствующих молекулярно-генетических экспериментов. [c.328]

    Иной способ фиксации азота свойствен растениям семейства бобовых, к которому относятся горох, фасоль, клевер и люцерна. Этот способ фиксации-его называют симбиотической азотфиксацией-основан на взаимодействии растения-хозяина с бактериями-симбионтами, обитающими в его корневых клубеньках. Ферменты, участвующие в фиксации азота, принадлежат клубеньковым бактериям, но и растение в свою очередь поставляет для этого процесса некоторые необходимые компоненты, которые у бактерий отсутствуют (рис. 22-27). Наряду с бобовыми способностью фиксировать атмосферный азот обладают и некоторые другие виды растений однако подавляющее большинство небобовых растений и все виды животных такой способности лишены. [c.675]


    Испытываются также и биологические подходы, с помощью которых можно было бы сделать атмосферный азот более доступным. Была, например, предпринята попытка определить, нельзя ли заселить различными видами азотфиксирующих бактерий или какими-нибудь их мутантами обычные небобовые культурные растения, в частности кукурузу, и таким путем создать новые полезные симбиотические ассоциации. Попутно обнаружилось, что в корнях ряда небобовых растений тропических стран тоже обитают азотфиксирующие бактерии. К сожалению, таким растениям для фиксации азота требуется очень теплая поч- [c.677]

Рис. 13.1. Симбиотическая фиксация азота в корневых клубеньках бобовых. А. Корень гороха с клубеньками. Б. Клубеньки в разрезе. В. Растительная клетка, заполненная бактериями КМгоЫит), в разрезе. Г.. Бактерии, находящиеся в клетках растеиия, приобретают необычную форму (бактероиды, инволюционные формы). Д. Внедрение бактерий через кончики корневых волосков и рост инфекционных нитей. Все рисунки сильно схематизированы. Рис. 13.1. <a href="/info/591291">Симбиотическая фиксация азота</a> в корневых клубеньках бобовых. А. Корень гороха с клубеньками. Б. Клубеньки в разрезе. В. <a href="/info/105476">Растительная клетка</a>, заполненная бактериями КМгоЫит), в разрезе. Г.. Бактерии, находящиеся в <a href="/info/1898731">клетках растеиия</a>, приобретают <a href="/info/1663337">необычную форму</a> (бактероиды, инволюционные формы). Д. Внедрение бактерий через кончики корневых <a href="/info/505780">волосков</a> и рост <a href="/info/590766">инфекционных нитей</a>. Все рисунки сильно схематизированы.
    Биологическая фиксация азота играет первостепенную роль в поддержании в почве уровня связанного азота. Как показано на фиг. 241, за возвращение в почву связанного азота взамен того, который уносится в океан путем эрозии, выщелачивания и орошения, и того, который уходит в атмосферу вследствие денитрификации, ответственны различные биологические агенты. Важная в количественном отношении и легко демонстрируемая азотфиксация в этом цикле осуществляется симбиотической системой бобовых растений и бактерий, я ивущих в их корневых клубеньках. Свободнон<ивущие бактерии [c.589]

    В проведенных нами ранее исследованиях по симбиотической фиксации азота бобовыми [6] было найдено, что в первые часы экспозиции бобовых в атмосфере N2 , меченый азот обнаруживался в больших количествах в клеточном соке клубеньковой ткани и совершенно отсутствовал в выделенных из клубеньков бактериальных клетках Rhizobium. Отсюда следовало, что фиксация азота локализована не внутри бактериальных клеток, а в клубеньковых структурах, образование которых индуцировано вторжением в корни бобовых растений бактерий Rhizobium. Это побудило нас начать работы по выделению и изучению азотфиксирующих ферментов, присутствующих в клу- [c.214]

    Фиксация азота. Заключительный этап развития симбиоза, на котором ризобии переходят к активной азотфиксации и к экспорту ее продуктов в растение, у большинства бобовых начинается после эндоцитоза бактерий в растительные клетки и формирования бактероидов. В бактероидах очень активно синтезируется нитрогеназа, которая может составлять до 30 % от их общего белка. Однако образование нитрогеназы — это наиболее важный, но не единственный процесс, определяющий функционирование клубеньков как органов симбиотической азотфиксации. Другими значимыми процессами являются формирование систем защиты нитрогеназы от молекулярного кислорода, обеспечение энергетических потребностей нитрогеназного комплекса и ассимиляция продуктов азотфиксации (табл. 4.4). Все эти функции выполняются бактериями и растениями совместно, что обеспечивается тесной структурной и функциональной интеграцией партнеров симбиоза. [c.177]

    Основной механизм направлен на превращение молекулярного азота в аммиак с помощью сложной ферментативной системы — нитрогеназы. Нитрогеназа содержится в клубеньковых бактериях, живущих в симбиозе с высшими растениями, и участвует в процессе симбиотической фиксации азота. Кроме того, в организмах свободноживущих азотфиксирующих бактерий (микобактерии, цианобактерии, азотобактер, спириллы и др.) нитрогеназа регулирует процессы несимбиотической фиксации. Значительная часть из 13 ООО видов бобовых растений способна к симбиотической фиксации азота, причем в значительных количествах. Особенно эффективно этот процесс протекает у таких культурных растений, как горох, соя и др. Известно также около 250 видов растений других семейств, способных симбиотически фиксировать азот (ольха, лисохвост, облепиха и т. д.). Симбиотическая фиксация азота ежегодно может обогащать 1 га почвы на 200 — 300 кг азота, в то время как несимбиотическая — всего на 15-30 кг. [c.362]

    Симбиотические отношения, приводящие к фиксации азота,— это наиболее эффективный способ биологического образования аммиака, потребляемого сельскохозяйственными культурами. Влияя на них, мы сможем достичь значительного прогресса в использовании биологической фиксации азота для производства пищевых продуктов. Для расширения масштабов и эффективности систем фиксации азота необходимо глубже понять генетику бактерий Rhizobium, чтобы не зависеть столь сильно от природных систем симбиоза, а формировать их с участием любого желаемого вида растений, употребляемых в пищу. [c.363]


    Ассоциация между Spirillum и его растением-хозяином тоже относится к симбиотической, но она ограничена поверхностью корней. Это менее прочный тип ассоциации, так как Spirillum можно выращивать отдельно от хозяина при наличии достаточного количества питательных веществ. Поэтому ученые изучают возможность крупномасштабного культивир ования этих бактерий в качестве источников фиксированного азота. Было также показано, что иногда данные бактерии живут в ассоциации с кукурузой. Это открывает возможность выведения штаммов, способных к фиксации азота на тех видах растений, которые обычно не имеют азотфиксирующих бактерий. [c.217]

    Признание огромной роли микроорганизмов в биологически важных круговоротах элементов на Земле связано с именами Сергея Николаевича Виноградского и Мартинуса Бейеринка. С. Н. Виноградскому принадлежит открытие уникального образа жизни — хемолитоавтотрофии и изучение серных и нитрифицирующих бактерий. С. Н. Виноградский и М. Бейеринк независимо друг от друга показали, что фиксацию молекулярного азота способны проводить только микроорганизмы, и выделили свободноживущих и симбиотических азотфиксаторов. С. Н. Виноградским разработан метод накопительных культур. [c.8]

    Можно выделить 3 группы фактов, полученных в результате изложенных здесь экспериментов, которые важны для развития работ по конструированию новых клеточных систем. 1. Показана возможность получения смешанных клеточных систем, растущих на среде без связанного азота, по-видимому, за счет бактериальной фиксации молекулярного азота. 2. Выявлен нормальный ход органогенеза в растительной ткани в. присутствии бактерий, хотя, к сожалению, в данных опытах бактерии и не включались в растения. 3. Установлено значительное повышение видоспецифических биосинтезов растительными клетками под влиянием микро организмов. Разработанные подходы могут быть, таким образом, использованы для получения систем, моделирующих природные симбиотические отношения, а также для дальнейшего экспериментирования в целях улучшения свойств растительной клетки m vitro или целого растении. [c.67]


Смотреть страницы где упоминается термин Фиксация азота симбиотическими бактериями: [c.313]    [c.163]    [c.82]    [c.429]    [c.395]    [c.377]    [c.306]    [c.364]    [c.15]    [c.421]    [c.257]    [c.592]    [c.592]    [c.201]    [c.306]    [c.364]    [c.181]    [c.181]    [c.398]    [c.280]    [c.173]    [c.117]   
Смотреть главы в:

Общая микробиология -> Фиксация азота симбиотическими бактериями




ПОИСК





Смотрите так же термины и статьи:

Фиксация

Фиксация азота



© 2024 chem21.info Реклама на сайте