Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Целлюлозные микрофибриллы в стенках растительных клеток

    А что произойдет, если деполимеризовать все микротрубочки кортикальной системьл, обработав растительную ткань колхицином (разд. 10.3.1) Влияние такой обработки на последующее отложение целлюлозы не столь однозначно, как можно было бы ожидать. Колхицин не подавляет образование новых целлюлозных мшсрофибрилл, и в некоторых случаях клетки могут продолжать откладывать микрофибриллы, ориентированные в прежнем направлении. Однако любые изменения в расположении микрофибрилл, связанные с индивидуальным развитием клетки, полностью блокируются. Например клетка ксилем1л, у которой в норме на определенной стадии развития должны возникать регулярно расположенные утолщения клеточной стенки, в присутствии колхицина образует лишь неупорядоченные отложения внеклеточного материала. Таким образом, ранее существовавшая ориентация микрофибрилл может сохраняться и без микротрубочек, но любая стадия клеточного развития, связанная с отложением микрофибрилл, ориентированных по-иному, требует наличия интактных микротрубочек, определяющих эту новую ориентацию (риа 19-45). [c.193]


    Помимо чисто научного интереса, который естественно вызывает структура такого уникального образования, как стенка растительной клетки, вопрос этот имеет крупное практическое значение. Знание тонкой структуры и подробностей формирования микрофибрилл и клеточной стенки в целом составляет солидную часть научного фундамента целлюлозной промышленности и производства натурального и искусственного волокна на основе целлюлозы. Характерным примером может служить непосредственная связь гелеобразующих свойств таких синтетических производных целлюлозы, как карбоксиметил-целлюлозы и частично метилированные целлюлозы, с распределением аморфных и кристаллических участков в исходном целлюлозном материале. [c.155]

    Клетки большинства тканей многоклеточных животных не содержат выраженной клеточной стенки. Растительные клетки, напротив, имеют очень сложную клеточную стенку, построенную из целлюлозных микрофибрилл, погруженных в матрикс (из пектина и гемицеллюлоз). [c.11]

    Целлюлозные микрофибриллы в составе клеточной стенки часто имеют вполне определенную ориентацию. Но от чего зависит их расположение Это важный вопрос, потому что, как мы увидим позже, ориентация целлюлозных микрофибрилл играет решающую роль в определении формы растительных клеток. Ответ на этот вопрос был подсказан тем фактом, что большинство микротрубочек в кортикальном слое цитоплазмы ориентировано так же, как и целлюлозные микрофибриллы, образующиеся в данное время в данном участке клетки. [c.192]

    Расположение микротрубочек в кортикальном слое также быстро меняется в ответ на внешние раздражители. Как уже обсуждалось выше, форма растительной клетки (а значит и форма растения) зависит от упорядоченного отложения ориентированных слоев целлюлозы, причем наиболее важной является ориентация самого нижнего слоя (см. разд. 20.4.7). Наружные слои целлюлозы в клеточной стенке часто имеют ориентацию, отличную от ориентации более поздних, внутренних слоев. Существуют по меньшей мере два механизма, благодаря которым новый и старый слои могут быть ориентированы по-разному. Но-видимому, оба они функционируют в растительных клетках 1) целлюлозные микрофибриллы в более старых слоях стенки могут перестраиваться относительно друг друга по мере их продвижения в наружный ряд, причем происходит разрыв и новое образование связей, которые соединяют полисахариды, входящие в состав стенки и 2) на плазматической мембране в стенку могут откладываться новые слои, которые имеют иную ориентацию, чем наружные. [c.425]

    Внутренняя организация растительной клетки и ее цитоскелет играют важную роль в формировании клеточной стенки, что, в свою очередь, определяет направление роста клетки и, следовательно, ее форму. Компоненты матрикса клеточной стенки вырабатываются и экспортируются аппаратом Гольджи, а целлюлозные микрофибриллы синтезируются непосредственно на поверхности клетки. Как места отложения различных компонентов стенки, так и ориентация целлюлозных фибрилл определяются микротрубочками кортикального слоя цитоплазмы. Элементы цитоскелета способны быстро реагировать на различные внешние стимулы, что может, например, приводить к перемещению хлоропластов под влиянием света. [c.426]


    Мы уже видели, что вызываемое тургором растяжение растительной клетки, часто приводящее к увеличению ее объема в пятьдесят и более раз. определяется ориентацией целлюлозных микрофибрилл клеточной стенки, что в свою очередь зависит от ориентации микротрубочек кортикального слоя цитоплазмы. В определении плоскости деления клеток важную роль играет также цитоскелет. [c.431]

    Толстая стенка растительной клетки (рис. 1-3) устроена необычайно сложно [ИЗ—116]. Благодаря ее сложному строению растения обладают прочностью и жесткостью, а их клетки способны к быстрому удлинению в период роста. Норткот [ИЗ] сравнил строение стенки растений с фибраглассом — пластиком, армированным стекловолокном. Так, в стенке клетки находятся микрофибриллы, состоящие из целлюлозы и других полисахаридов, которые погружены в матрикс, также состоящий в основном из полисахаридов. На ранних стадиях роста зеленых растений закладывается первичная клеточная стенка, содержащая свободно переплетенные целлюлозные волокна диаметром приблизительно 10 нм, центральная часть которых (- 4 нм) имеет кристаллическую структуру. Такие целлюлозные волокна содержат 8000—12 000 остатков глюкозы. [c.395]

    Ростом растительных клеток управляют два фактора растяжимость клеточных стенок и тургорное давление клеточного содержимого, действующее на клеточную стенку. Мы можем представить себе эту ситуацию по аналогии с неполностью надутым воздушным шаром, в котором увеличение объема пропорционально внутреннему давлению и обратно пропорционально сопротивлению, оказываемому стенкой шара. Шар будет увеличиваться в размерах, если мы повысим внутреннее давление накачиванием в него воздуха. Это аналогично увеличению тургорного давления внутри клетки. С другой стороны, если бы мы смогли сделать стенку шара более растяжимой, воздействуя на нее размягчающими резину химикатами, то шар также увеличился бы в размерах, но без повышения пе,рвоначального внутреннего давления. Через 1—2 ч после нанесения ауксина на стебель или колеоптиль их клетки увеличиваются в размерах намного больше, чем соответствующие клетки в контрольном варианте без ауксина. Такое увеличение происходит в основном 1В длину, а не в ширину. Это обусловлено спиральным расположением целлюлозных микрофибрилл в клеточной стенке, что способствует скорее удлинению, чем радиальному росту клетки, а также тем, что ауксин увеличивает растяжимость клеточной стенки. Мы можем это измерить, если сначала прокипятим отрезок стебля или колеоптиля, для того чтобы убить его и устранить тем самым тургорное давление в клетках, а затем, зажав оба конца отрезка, определим силу, необходимую для его растяжения. Эта сила связана с растяжимостью стенки обратной зависимостью. Растяжимость стенки можно разложить на два компонента пластическую растяжимость (необратимую деформацию) и эластическую (обратимую деформацию). Если прежде чем убить сегменты стебля растения, обработать их ауксином, то окажется, что для их необратимого растяжения до определенного предела потребуется меньше усилий, чем в контрольном опыте без применения ауксина. Такое индуцированное ауксином увеличение пластической растяжимости клеточной стенки наблюдается лишь в живых клетках. Ауксин не оказывает никакого вл ияния на растяжимость при его нанесении непосредственно на клеточные стенки в отрезках мертвого стебля или колеоптиля. [c.277]

    Целлюлозные волокна образуют каркас как первичной, так и вторичной клеточной стенки. Целлюлоза — это гигантский полимер, состоящий из собранных в пучки цепей глюкана, каждая из которых в свою очередь представляет собой полимер шестиуглеродного сахара глюкозы (см. рис. 5.3). В первичной клеточной стенке диаметр микрофибрилл целлюлозы равен приблизительно 4 нм, во вторичной же эти микрофибриллы почти в 6 раз толще. Вещества, окружающие целлюлозные фибриллы, скрепляют их друг с другом (рис. 2.31). Таким цементирующим материалом служат гемицеллюлозы, гликопротеиды и пектиновые вещества. Гемицеллюлозы — это длинные цепи, построенные из остатков двух пентоз, ксилозы и арабинозы, к которым присоединены боковые цепи, представленные другими моносахаридами, Пектиновые вещества (полимеры, построенные из сахароподобных единиц) образуют с водой либо гели, либо вязкие растворы. Поскольку подобные переходы обратимы и связаны с изменениями температуры и некоторых других условий, они могут оказывать существенное влияние на текстуру клеточной стенки. Главный компонент жесткой клеточной стенки — лигнин. присутствие которого характерно для древесины. Лигнин образуется в результате окислительной конденсации типичных ароматических спиртов растительного происхождения (конифе-рилового, синапового, кумарового). Он устойчив к различным химическим воздействиям и в значительной степени увеличивает жесткость и прочность клеточных стенок. В тех клетках, [c.69]


Смотреть страницы где упоминается термин Целлюлозные микрофибриллы в стенках растительных клеток: [c.110]   
Биохимия Том 3 (1980) -- [ c.395 ]




ПОИСК





Смотрите так же термины и статьи:

Стевны

Стейси



© 2025 chem21.info Реклама на сайте