Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ассоциация между ионами

    В состав антистатических присадок входят в основном органические соли, в значительной степени повышающие удельную проводимость системы, что обусловлено эффектом ассоциации между ионами. Однако присадки можно использовать только в том случае, если они прошли все стадии испытаний с топливом и допущены к содержанию в топливе. [c.152]

    Взаимодействие ионов е полярными молекулами растворителя называется сольватацией (Для водных растворов — гидратацией) ионов. Сольватация приводит к образованию в растворе ассоциаций между ионами (катионом и анионом) и молекулами растворителя (рис. 75). [c.195]


    Как и в случае обмена в присутствии хлоридов, при добавлении неводных растворителей значительно возрастает ассоциация между ионами металлов и нитрат-ионами, что приводит к увеличению сорбции на анионитах. Так, например, коэффициент распределения бария на сильноосновном анионите в растворе 90%-ном по диоксану и 0,002 М по азотной кислоте составляет 500. Смесь магния, кальция, стронция и бария хорошо разделяется с помощью 60—90%-ного раствора диоксана при скачкообразном уменьшении концентрации азотной кислоты [57]. При добавлении ацетона и метанола улучшается хроматографическое разделение [c.213]

    Селективность электрода зависит не только от подвижности иона, энергии ассоциации между ионами и т. д., но и от таких факторов. [c.19]

    Краус и Фуосс разработали интересную теорию в объяснение полученных ими кривых. Как уже было упомянуто, в растворителях с низкой диэлектрической постоянной сила притяжения между ионами, имеющими заряды неодинаковых знаков, довольно значительна по сравнению с растворителями, у которых диэлектрическая постоянная высока. Отсюда следует, что ассоциация неодинаковых ионов, приводящая к образованию нейтральных молекул, намного более вероятна в углеводородных растворителях, чем вводе. Такого рода молекулы являются слабыми проводниками. По мнению Крауса и Фуосса, первоначально наблюдаемое быстрое уменьшение проводимости при низкой концентрации объясняется спариванием указанных ионов. Кривые, иллюстрирующие эту стадию, соответствуют уравнению вида >>,С 1= = постоянной величине. Затем кривые проходят через точку минимума, после чего они показывают постепенное возрастание проводимости при концентрации, превышающей указанную точку. Фуосс и Краус предполагают, что за этой точкой находится зона, в которой начинают образовываться ионные триплеты высокой проводимости. [c.203]

    Электростатическая теория позволяет рассчитать ряд свойств растворов сильных электролитов, которые находятся, однако, в удовлетворительном согласии с опытом лишь для весьма малых концентраций раствора, порядка 0,01 М и менее. Ряд фактов эта теория объяснить не может. Все это связано с неточностью принятых допущений. При малых расстояниях между ионами силы их взаимодействия не могут быть сведены лишь к электростатическим. Учет взаимодействия ионов с растворителем не должен игнорировать молекулярную структуру растворителя простым введением диэлектрической проницаемости. Характер этого взаимодействия зависит от строения и других индивидуальных особенностей ионов электролита и молекул растворителя и изменяется с разбавлением раствора. Представление о полной диссоциации электролита должно быть дополнено учетом ассоциации ионов и образования комплексных ионов и молекул. [c.214]


    В разбавленных растворах, когда ионы находятся на большом расстоянии друг от друга, их взаимодействие в основном является электростатическим. По мере сближения ионов при увеличении концентрации раствора начинается перекрывание сольватных оболочек отдельных ионов и электростатическое взаимодействие ионов осложняется ион — дипольным взаимодействием. Иногда при сближении катионов и анионов происходит ассоциация, при которой силы взаимодействия между ионами уже нельзя считать чисто электростатическими. Еще более сильное неэлектростатическое взаимодействие возникает при образовании в растворе электролита комплексных ионов и недиссоциированных молекул. [c.28]

    Чисто физическая теория Фуосса и Крауса, объясняющая аномальную проводимость образованием ионных двойников и тройников за счет куло-новского взаимодействия, была шагом вперед, но она не явилась общей теорией, так как в ней не было учтено то обстоятельство, что ассоциация ионов связана не только с кулоновским, но и с химическим взаимодействием между ионами и молекулами растворителя. [c.9]

    Однако часто ассоциация, установленная электрохимическими методами, не сопровождается изменениями оптических свойств и появлением полос в спектрах, соответствующих молекулам. В этих случаях, вероятно, имеет место электростатическое взаимодействие между ионами при образовании ассоциатов. Однако область поглощения света такими ионами лежит в далекой ультрафиолетовой области, т. е. в области интенсивного поглощения растворителями, что затемняет картину. [c.10]

    По отношению к сильным электролитам, согласно Улиху, причиной нивелирующего действия растворителя является сольватация. Сольватные оболочки уменьшают стремление ионов к ассоциации. Если сольватные оболочки отсутствуют, взаимодействие между ионами усиливается. [c.111]

    При более высоких концентрациях и в средах с более низкими диэлектрическими проницаемостями возникает ассоциация ионов. Ассоциация ионов или неполная диссоциация будет одинаково сказываться на свойствах электролитов. В обоих случаях необходимо учесть равновесие между ионами и- молекулами с помощью константы, которая, например, для бинарного электролита запишется  [c.124]

    Из сказанного следует, что как состояние ионов при бесконечном разбавлении, так и состояние ионов в концентрированных растворах зависит от явления сольватации. При этом состояние ионов при бесконечном разбавлении зависит только от явления сольватации. Состояние ионов в концентрированных растворах зависит от явления сольватации ионов, дебаевского взаимодействия между ионами и ассоциации ионов. Совокупность этих явлений — сольватации, электростатического взаимодействия и образования ионных ассоциатов или неполной диссоциации — определяет состояние электролита при любой концентрации в любом растворителе. [c.214]

    Полученные выражения сильно отличаются от уравнения Бьеррума. Они показывают, что константы ассоциации зависят от энергии кулоновского взаимодействия между ионами и от различия в энергии взаимодействия свободных и связанных ионов с дипольными молекулами растворителей. [c.320]

    Физический смысл полученных эффектов нетрудно понять. Электростатические взаимодействия препятствуют диссоциации уксусной кислоты, поскольку образующиеся разноименно заряженные ионы притягиваются друг к другу. Повышение ионной силы, т. е. увеличение общего числа заряженных частиц в растворе, ослабляет взаимодейст-т между ионами и СНз СОО , создавая вокруг каждого из них более плотную ионную атмосферу, поэтому диссоциация усиливается. Наоборот, во втором примере электростатическое отталкивание между ионами СЫ и [Ре(СЫ)5] препятствует их обратной ассоциации, и повышение ионной силы, ослабляющее отталкивание между этими ионами, способствует их ассоциации. [c.231]

    Согласно Измайлову, диссоциация кислот, солей и оснований на ионы в водных и неводных растворах зависит от ряда сопряженных динамических равновесий образования сольватов — продуктов присоединения электролита к молекулам растворителя, диссоциации сольватов с образованием сольватированных ионов лиония и лиата, ассоциации сольватированных ионов с образованием ионных пар, или двойников. Соотношения между активными концентрациями продуктов этих реакций зависят от свойств растворенного электролита и растворителя, а также от их концентраций. [c.395]

    Сверху вниз в группах периодической системы нуклео-фильность возрастает, хотя основность падает. Так, обычный порядок нуклеофильности галогенидов выглядит следующим образом 1->Вг->С1 >р- (хотя, как будет показано ниже, этот порядок зависит от природы растворителя). Аналогично любой серосодержащий нуклеофил сильнее соответствующего кислородсодержащего аналога, и то же справедливо для соединений, содержащих фосфор и азот. Главная причина различий между основностью и нуклеофильностью заключается в следующем меньшие по размеру отрицательно заряженные нуклеофилы лучше сольватированы обычными полярными протонными растворителями, т. е. поскольку отрицательный заряд С1 по сравнению с I" более сконцентрирован, первый более плотно окружен оболочкой молекул растворителя, которая образует барьер между нуклеофилом и субстратом. Это особенно важно для полярных протонных растворителей, молекулы которых могут образовывать водородные связи с нуклеофилами небольшого размера. В качестве доказательств можно привести следующие факты многие реакции нуклеофильного замещения с участием небольших отрицательно заряженных нуклеофилов значительно быстрее происходят в полярных апротонных, чем в протонных растворителях [260], и в ДМФ — апротонном растворителе — порядок нуклеофильности галогенид-ионов имеет следующий вид С1->Вг->1- [261]. В другом эксперименте, проведенном в ацетоне, в качестве нуклеофилов были использованы ВщЫ+Х- и их (где Х- галогенид-ион). Ассоциация галогенид-иона в первой соли значительно ниже, чем в иХ. Относительные скорости реакций с участием ЫХ составили для С1- 1, для Вг- 5,7 и для 1 6,2 это нормальный порядок, тогда [c.76]


    В 1887 г. С. Аррениусом была создана теория электролитической диссоциации, по которой кислотам и основаниям можно дать следующие определения. Кислоты — это электролиты, отщепляющие в водном растворе ионы H" ", а основания — электролиты, отщепляющие в растворе ионы ОН . В результате ассоциации этих ионов между кислотой и основанием происходит реакция нейтрализации с образованием воды и соответствующей соли. [c.166]

    Основания — электролиты, отщепляющие в водном растворе ионы ОН . В результате ассоциации этих ионов между кислотой и основанием происходит реакция нейтрализации с образованием воды и соответствующей соли. [c.221]

    Степень протекания химических сольватационных процессов зависит от электронной структуры молекул и частиц компонентов растворителя и растворенного вещества, способности частиц к ком-плексообразованию, диссоциации, ассоциации, образованию ионных пар и т. д. При сольватационных близкодействующих взаимодействиях их энергия достигает 400 кДж/моль. К дальнодействующим силам взаимодействий относят электростатические взаимодействия между ионами, металлическую связь и силы Ван-дер-Ваальса. Молекулы растворителя ориентируются в структуры различной устойчивости вокруг растворенных частиц с образованием сольватных оболочек. Число частиц растворителя в первой сольватной оболочке определяют как координационное число сольватации (гидратации) Пс- Значение Пс в водных растворах достигает 6—8. [c.91]

    Н. А. Измайлов развил теорию Бренстеда, учтя ионизацию продуктов ассоциации кислот и оснований с растворителем, а не только электростатический эффект взаимодействия между ионами, как это сделал Бренстед. Химическое взаимодействие кислот и оснований с растворителем очень существенно для усовершенствования теории Бренстеда. [c.56]

    Водородная связь. Связи атома водорода с наиболее электроотрицательными атомами Р, О, N частично имеют ионный характер. Поэтому молекулы НР, НаО и ЫНз обладают постоянными дипольными моментами. Между такими молекулами возможно значительное дипольное взаимодействие с образованием ассоциаций между ними, а при соответствующих температурах — и образование кристаллов. На рис. 20 схематически показано образование межмолекулярных Водородных связей между молекулами Н2О. Кратчайшие расстояния между соседними молекулами, показанные на рис. 20 пунктиром и изображающие межмолекулярные водородные связи, зависят от взаимной ориентации молекул. [c.52]

    В р-рах сильных электролитов нри новышении конц. в результате ассоциации ионов могут возникать ионные пары, [ ройники и т. д. В приближении чисто электростатич. взаимод. между ионами константа диссоциации К контактных, т. е. не разделенных молекулами р-рителя ионных пар, образованных однозарядными ионами с радиусами г+ и г , равна  [c.699]

    Форма кривых потенциометрического титрования в неводных средах зависит от используемого электрода, растворителя, фонового электролита и силы кислот или оснований. На форму кривых влияют также присутствие ионов металлов, ассоциация между растворенным веществом и растворителем, образование комплексов кислота - анион кислоты и другие факторы. [c.247]

    Диэлектрическая проницаемость при замене воды органическими растворителями уменьшается от 80 для воды до 33 для метанола, 24 для этанола, 21 для ацетона и 2,5 для диоксана. При понижении диэлектрической проницаемости силы притяжения между ионами в растворе увеличиваются, что приводит к их ассоциации и комплексообразованию. Хорошо известная теория ионных пар Бьеррума утверждает, что ассоциация между ионами разного заряда приводит к быстрому увеличению диэлектрической проницаемости, зависящей от зарядов и радиусов ионов, до некоторой определенной критической величины. Теория Бьеррума подтверждена экспериментально металлы, образующие хлоридные комплексы, значительно легче вымываются с катионитов смешанными растворами вода — ацетон и вода — спирт, содержащими 60—80% органической жидкости, чем водными растворами увеличивается, кроме того, избирательность вымывания. Это было замечено Фрицем и Реттигом [34, 35] и подтверждено другими авторами [36. Так, соляная кислота вымывает с катионита кобальт, оставляя никель, а кадмий и цинк вымываются в указанном порядке раньше ионов, не образующих устойчивых хлоридных комплексов. В качестве элюирующего реагента применяют, например, раствор тиоцианата в смеси вода — ацетон как для десорбции ионов с катионита, так и для сорбции на анионите [37]. [c.203]

    Самоассоциация между ионными парами ведет к образованию агрегатов, например димеров, трпмеров или квадруплетов. Такая ассоциация энергетически выгодна и часто наблюдается в неполярной среде, если растворы не бесконечно разбавлены. Ассоциация становится измеримой уже при таких низких концентрациях, как 0,001 моль/л. Например, криоскопическая степень ассоциации (отношение экспериментально найденной молекулярной массы к формульной) для тиоцианата тетра-н-бутиламмония в бензоле составляет 2,5 при концентрации 0,0013 моля на 1000 г растворителя, увеличивается до 31,9 при 0,281 моля на 1000 г растворителя и снова несколько снижается при более высоких концентрациях (22,7 при 0,753 моля на 1000 г растворителя) [25]. Такая ассоциация ионных пар оказывает очень сильное влияние на экстракцию солей из водной фазы в органическую (разд. 1.3.1). Степень ассоциации зависит от катиона, аниона, растворителя и концентрации. Тримеры одновалентных ионов являются заряженными частицами и проводят электрический ток таким же образом, как и ионные пары, содержащие многовалентные ионы. [c.19]

    При значительной ассоциации необходимо учитывать активность образующихся ассоциатов. В этом случае, согласно Бьерру му, можно допустить наличие термодинамического равновесия между ионами в растворе истинно сильного электролита и образующимися ионными парами. Полагая активности анионов и ка тионов одинаковыми, можем записать выражение для константы равновесия в соответствии с законом действия масс  [c.398]

    Деление электролитов на сильные и слабгле условно. Совре-мен11ые исследования указывают на существование в растворах электролитов не только простых ионов и нейтральных молекул, но и различных ассоциатов ионов, включающих в себя молекулы растворителя, например в водном растворе вместо простой диссоциации вида АВ А + В рассматривается равновесие исходных молекул АВ с их сольватированной формой (АВ)с АВ + Н2О (АВ)с, диссоциация сольвата на ионы (АВ)с= = А(+ + Вг, ассоциация сольватированных ионов А и ВГ с образованием ионных двойников Ас 4- ВГ (А ВГ) и др. Каждая из подобных реакций характеризуется своей константой равновесия. Кроме того, учитывается возможность существования различных сил, действующих между частицами электролита и между этими частицами и молекулами растворителя. Таким образом, представления о слабых и сильных электролитах, когда совсем пренебрегают силами взаимодействия ионов или их рекомбинацией и ассоциацией, а также не учитывают остальные возможные процессы, являются упрощенными и годятся лишь для приближенного описания. Несмотря на это, понятия сильного и слабого электролита во многих случаях оказываются достаточными. [c.204]

    В своих работах Саханов не рассматривал причин, вызывающих образование комплексов. Впервые этот вопрос поставил В. К. Семенченко. Он объяснил явление ассоциации кулоновским взаимодействием между ионами. Согласно Семенченко, если электростатическое взаимодействие между ионами достигает величины большей кинетической энергии ионов, то два иона связываются менеду собой и уже не способны к самостоятельному движению. Они образуют частицы из двух ионов, которые ведут себя как отдельные кинетические особи. Семенченко при этом исходил из средней кинетической энергии ионов, равной ВТ в расчете на 1 г-ион или <кТ в расчете на ион. Величина электростатического взаимодействия но закону Кулона определяется выражением г е /ег. [c.114]

    Сила взаимодействия между ионом и ионным двойником по сравнению с силой взаимодействия двух ионов ослабляется отталкиванием между одно-жменными ионами, поэтому ассоциация в ионные тройники происходит [c.122]

    Можно было бы ожидать, что в апротоиных растворителях соотношения в силе кислот наиболее просты, так кaIi кислоты пе вступают во взаимодействие с растворителями. Одпако в этих растворителях в связи с их низкой диэлектрической проницаемостью, сильно развиты процессы ассоциации менеду молекулами и между ионами, которые весьма осложняют ожидаемые простые соотношения. [c.283]

    Из сопоставления следует, что все они являются частными случаями этого уравнения. Уравнение Грегора зачитывает только изменение степени набухания при замене одного иона на другой, т. е. учитывает только четвертый член уравнения (VII, 102). Уравнение Самсонова в явной форме учитывает только изменение ион-дипольного взаимодействия при обмене ионов, т. е. учитывает третий и частично четвертый член уравнения (VII,102). Уравнение Бойда, Шуберта, Адамсона и уравнение Сакаки Томихоко учитывают только изменение диэлектрической проницаемости. Наконец, уравнение Панченкова и Горшкова, выведенное ими для характеристики обмена иона водорода на ионы металлов, учитывает третий, четвертый и пятый члены уравнения (VII,102) и эквивалентно частному случаю для обмена ионов металла при условии, когда взаимодействие между ионами и ионогенными группами можно рассматривать как ионную ассоциацию. Ни одно ранее нредложен-ное уравнение не учитывает влияния основности растворителей на обмен иона водорода и ионов лиата и ни одно уравнение не учитывает молекулярно-адсорбционные свойства ионитов. [c.376]

    С точки зрения строго термодинамической нет необходимости связывать коэффициент активности растворенного вещества с механизмом поведения этого вещества. С другой стороны, нельзя не пытаться объяснить, почему происходят отклонения от идеального поведения. Опираясь на современные знания химии растворов, стало возможным показать, что коэффициент активности электролита тесно связан с такими факторами, как взаимодействие ионов, ионная ассоциация и ионное отталкивание, большая часть которых может быть понята с позиций электростатического взаимодействия. По-видимому, эти факторы зависят от диэлектрической проницаемости растворителя, и поэтому можно ожидать прямой связи между диэлектрической проницаемостью растворителя и коэффициентом актив1юстн растворенного вещества. Обычным способом определен я коэффициента активности электролита является использование гальванической ячейки. Связь между мольным коэффициентом активности электролита и измеренной э. д. с. ячейки для одно-одновалентного электролита дает уравнение Нернста [c.356]

    Ассоциация ионов в растворах. Если раствор электролита содержит достаточно большое количество ионов, то между ними возникает электростатическое взаимодействие, влияющее на свойства раствора. Еще в 1890 г. И. А. Каблуковым было обнаружено явление аномальной электропроводности. Обычно с увеличением разведения в растворах слабых и сильных электролитов увеличивается как степень диссоциаций, так и подвижность ионов, т. е. увеличивается электропроводность при уменьшении концентрации электролита. Однако при исследовании растворов хлористого водорода в амиловом спирте И. А. Каблуков обнаружил аномальное увеличение электропроводности раствора при значительном повышении концентрации НС1. Позже этот факт был объяснен обра-зованием сложных комплексных ионов, растворы которых хорошо проводят электрический ток. Таким образом, для растворов характерно не только явление диссоциации, но и обратное ему явление ассоциации — соединение ионов друг с другом, а также ионов с молекулами растворенного вещества. [c.231]

    Все устойчивые одноатомные анионы имеют электронное строение соответствующего для данного периода благородного газа, а простейшие катионы имеют электронное строение благородного газа, предшествующего данному периоду (сравните, например, N3" и N6, К- и Аг и т. д.). В от личие от ковалентной иогаая связь не обладает ни направленностью, ни насыщаемостью. Силы притяжения между зарядами пе зависят от направления, по которому эти заряды сближаются (отсутствие направленности). Кроме того, два разноименных иона, связанные силами притяжения, не теряют своей способности взаимодействовать с ионами противоположного знака. В этом и проявляется отсутствие насыщаемости у ионной сэязи. Следствием этой особенности ионной связи является ассоциация всех ионов с образованием ионного кристалла, в котором каждый ион окружен ионами противоположного знака. Число ионов противоположного знака, удерживающихся данным ионом на ближайшем расстоянии, получило название координационного числа данного иона. Ионы могут удерживать также и нейтральные молекулы. При большом размере катиона и малом радиусе аниона (соотношение кат "аи > 0 3) вокруг катиона (аниона) координирует 8 анионов (катионов). В результате образуется кристалл так называемой кубической структуры — 8 ионов одного знака располагаются в вершинах куба, в центре которого находится ион противоположного знака (тип СзС1 рис. 14). [c.82]

    Р-ры сильных электралитов не являются идеальными и для их описания необходим учет межионного взаимод. даже в области предельного разведения. При определенных условиях, напр, в р-рителях с малой диэлектрич. проницаемостью, при низких т-рах или при образовании многовалентных ионов, благодаря сильно1иу электростатич. притяжению противоположно заряженных ионов мо1ут образовываться ионные ассоциаты, простейшими из к-рых являются ионные п ры. Равновесие между сольватир. ионами и ионными парами характеризуется константой диссоциации, аналогично исходному распаду молекул, или обратной ей величиной - константой ассоциации. В приближении электростатич. взаимод. между ионами константа диссоциации контактных ионных пар, образованных двумя ионами с радиусами и г. и зарядовыми числами z . и г., м. б. рассчитана по ф-ле  [c.433]

    Вопрос о равновесной концентрации ионных пар в растворе целесообразно рассмотреть и с позиций изменения термодинамических функций Л(7, Л5, ДЯ. Поскольку между ионами действуют дисперсионные и электростатические силы, а последние зависят от полярности среды и концентраций других ионов, выраженных через ионную силу, то константа равновесной ассоциации ионов может бьггь представлена в вкде [c.226]


Смотреть страницы где упоминается термин Ассоциация между ионами: [c.91]    [c.66]    [c.91]    [c.263]    [c.34]    [c.97]    [c.129]    [c.111]    [c.115]    [c.221]    [c.127]    [c.204]    [c.121]    [c.31]   
Электрохимия растворов издание второе (1966) -- [ c.141 ]




ПОИСК





Смотрите так же термины и статьи:

Ассоциации константа реакции между ионами

Ассоциация

Ассоциация ионов

Корреляция между ассоциацией и образованием сложных ионных комплексов локализованный гидролиз



© 2024 chem21.info Реклама на сайте