Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структурные повреждения хромосом

    Хромосомные изменения, разбираемые в этой главе, представляют собой разрывы и структурные перестройки, возникающие в ядре в результате двух или больше разрывов хромосом с последующим соединением разорванных концов хромосом разными способами. Этот эффект облучения является, по-видимому, прямым в том смысле, что разрыв вызывается ионизирующей частицей, проходящей сквозь хромосому или в непосредственной близости от того места, где происходит разрыв. Но такого рода разрывы и последующая реорганизация хромосом—не единственный тип изменений, возникающих в хромосомах при облучении клеток. Другой тип сводится к изменению свойств поверхности хромосом, вследствие чего они начинают слипаться друг с другом. В результате во время метафазы хромосомы прилипают одна к другой в тех местах, где они случайно соприкоснулись, а сестринские хромосомы не совсем разъединяются в анафазе, и между ними образуются мостики. При сильных изменениях хромосомы иногда образуют в метафазе комок, и дальнейшие стадии деления не наступают или мостики во время анафазы могут не разорваться, и тогда дочерние ядра не образуются. Изменения этого типа, по-видимому, не зависят от локального повреждения хромосомы, и их нельзя объяснить прохождением ионизирующих частиц через них. Такие аномалии связаны с общим изменением свойств всей поверхности хромосомы. Эти изменения удобно называть физиологическим эффектом облучения в противоположность термину структурные изменения, которым мы обозначаем разрывы и перестройки, возникающие в результате соединения разорванных концов. Последний тип изменений можно объяснить локальным действием облуч<жия на хромосомную нить . [c.150]


    Реакцию задержки деления следует отличать от полного подавления митоза, наступающего после воздействия больших доз, когда клетка значительное время продолжает жить, но необратимо утрачивает способность к делению. Среди многих проявлений действия излучения на жизнедеятельность клетки подавление способности к делению является наиболее важным. Основной причиной репродуктивной гибели клеток являются структурные повреждения ДНК (одно- и двухнитевые разрывы), возникающие под влиянием облучения. Макромолекулы ДНК состоят из генов и образуют хромосомы, управляющие всей деятельностью клетки. Структура молекулы ДНК в соответствии с моделью Уотсона — Крика представляет собой две длинные цепи нуклеотидов, закрученные относительно друг друга в двойную спираль. Ее можно представить как спиральную лестницу, боковины которой формируются молекулами моносахарида (де-зоксирибозы) и фосфорной кислоты, а перекладины образованы четырьмя парами азотистых оснований аденином (А), цитозином (Ц), гуанином (Г) и тимином (Т) (рис. 4.2). [c.39]

    Все возрастающий интерес к надмолекулярным структурам ДНК не случаен и объясняется тем, что основные проблемы радиобиологии не нашли должного разрешения с позиций повреждения молекулярной структуры ДНК. Более того, неопределенность в этом вопросе привела к тому, что структурным повреждениям в ДНК не придается должного значения в начальном радиационном поражении клетки [2]. Основной причиной такого положения является недооценка того, что ДНК в клетке функционирует не самостоятельно, а в составе сложно организованных надмолекулярных структур. Поэтому исследование функций ДНК в этих структурах, особенностей ее вторичной, тритичной и четвертичной структур в метаболических процессах может быть ключевым для понимания их радиобиологической роли. Хромосомы ядра клетки —это надмолекулярные структуры ДНК, в организации которых важная роль принадлежит различным белкам [45, 61] и ионам металлов [74]. [c.56]

    Потеря Х-хромосомы через короткое время после оплодотворения - в течение первых делений дробления-часто происходит также и у людей. По-видимому, именно она служит наиболее частой причиной образования зигот ХО. С использованием маркеров (групп крови Xg) показано, что в большинстве случаев утрачивается Х-хромосома, полученная от отца. Таким образом, феномен утраты X-хромосомы характерен и для человека, и для мыши. Поэтому можно с уверенностью заключить, что хромосомы в преовуляторном ооците и очень ранней зиготе человека могут теряться, могут индуцироваться нерасхождения и структурные повреждения. [c.236]


    Генетические эффекты излучения являются результатом генных мутаций и аберраций хромосом. Структурные и количественные ошибки в человеческих хромосомах составляют основную часть радиационно-индуцированного генетического повреждения даже значительная доля локусспецифических или точковых мутаций, как сейчас полагают, является результатом хромосомных микроделений. [c.100]

    Таким образом, изменяя регуляцию индуцибельных и репрессибельных оперонов, существует возможность повышать продукционную активность определенных промышленных штаммов-продуцентов. Уместно отметить, что структурные гены одного метаболического пути не всегда объединены в единый оперон (наподобие лактозному), однако это не мешает их регуляции с помощью индукции или репрессии. Так, например, гены Е.соИ, детерминирующие структуру ферментов, обеспечивающих биосинтез аргинина, располагаются в различных областях хромосомы, но все контролируются одним и тем же геном-регулятором. Такая система образует регулон. Другим показательным примером является 808-регулон, гены которого детерминируют структуру более десятка различных белков и ферментов, участвующих в репарации повреждений ДНК клетки. Все эти структурные гены регулируются одним репрессором - продуктом гена 1ехА. Опероны и регулоны, контролирующие взаимосвязанные физиологические функции обнаружены у всех генетически изученных видов бактерий. [c.26]


Смотреть страницы где упоминается термин Структурные повреждения хромосом: [c.41]    [c.73]    [c.431]    [c.29]    [c.169]   
Смотреть главы в:

Действие радиации на живые клетки -> Структурные повреждения хромосом




ПОИСК





Смотрите так же термины и статьи:

Хромосома хромосомы

Хромосомы



© 2025 chem21.info Реклама на сайте