Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение радиуса корреляции аномалий

    Определение радиуса корреляции аномалий [c.269]

Рис. 56. К определению радиуса корреляции аномалий Рис. 56. К <a href="/info/1449761">определению радиуса корреляции</a> аномалий

    Способы определения радиусов корреляции аномалий потенциальных полей описаны выше в 3 главы 6. Эти же способы можно перенести и на определение радиусов взаимной корреляции аномалий. Рассмотрим более подробно методику их определения [1, 2]. [c.368]

    Протяженность аномалии по направлению оси х или у или ее ширина, которая зависит как от глубины залегания аномальных тел, так и от их горизонтальных и вертикальных размеров, определяется радиусом корреляции аномалий [41]. Радиус корреляции аномалий и способы его нахождения достаточно хорошо изучены. В то же время вопрос определения ширины спектра аномалий рассматривался крайне редко и не изучался специально. Поэтому рассмотрим его подробно. [c.209]

    Для правильности выводов примем один и тот же критерий определения ширины аномалий и соответствующих им спектров, а именно, хорошо изученный и исследованный критерий определения радиуса корреляции. Перенесем его и на случаи спектров аномалий. Так как радиус корреляции определяют из данных автокорреляционных функций, то ширину спектров будем находить из значений связанных с ними энергетических спектров аномалий. Это позволит применить получаемые формулы как к детерминированным, так и к случайным аномалиям. Тогда [c.209]

    Одним из важных параметров гравитационных и магнитных аномалий является радиус корреляции, зависящий от ширины аномалий и характеризующий их коррелируемость. В последнее время этот параметр широко применяется при решении различных задач гравиразведки и магниторазведки -при разделении полей, районировании территорий, определении формы и глубины залегания источников и др. Наиболее полно вопросы определения радиуса корреляции рассмотрены и разработаны в работе [38]. Результаты этой работы позволяют определить рассматриваемый параметр как по данным аномалий, так и в частотной области по данным их энергетических спектров. Поэтому приведем только конечные формулы. [c.269]

    При практических расчетах могут быть случаи, когда автокорреляционная функция является знакопеременной осциллирующей функцией, имеющей множество точек нулевых значений при Q(0) 0. В этом случае для определения радиуса корреляции необходимо применить формулу (6.18). Но применение этой формулы осложняется тем, что приходится считать площади при далеких осцилляциях автокорреляционной функции кроме того, значения функции при очень больщих значениях X мало сказываются на коррелируемости аномалий. Поэтому, если будем считать в таких случаях площадь до вто- [c.273]


    Рассмотренные выше формулы служат для определения радиуса корреляции по автокорреляционной функции аномалии. В случае аномалии одного знака радиус корреляции можно определить и непосредственно по исходной гравитационной или магнитной аномалии fix), а именно, из формулы [c.274]

    Как видно из этой формулы, она определяет значение радиуса корреляции аномалии непосредственно по значениям самой аномалии. Это важно, так как для определения радиуса корреляции не нужно строить автокорреляционную функцию. [c.274]

    Физический смысл применения радиуса корреляции для районирования заключается в следующем. Радиус корреляции - это параметр, зависящий от глубины залегания и размеров аномальных тел. В районах с однородным геологическим строением глубина залегания, форма и размеры аномальных тел подчиняются определенным закономерностям. Поэтому и значение радиуса корреляции аномалий подчиняется определенным закономерностям в пределах однородных районов и [c.288]

    Это - одно из многих неравенств В.Н. Страхова для оценки глубины залегания ближайшей к поверхности особой точки аномалий. Из идентичности правых частей формулы определения радиуса корреляции и неравенства для оценки Л следует, что для районирования можно применять и любую другую функцию, оценивающую глубину залегания ближайшей к по- [c.289]

    Применение радиуса корреляции аномалий, например, при определении формы тел, при построении оптимальных фильтров, описано в соответствующих разделах данной работы. [c.290]

    Полученные соотношения имеют важное практическое применение, в частности они будут использованы в дальнейшем при определении значений радиуса корреляции знакопеременных гравитационных и магнитных аномалий. [c.90]

    Для знакопеременных аномалий такие выражения, определяющие радиус корреляции, получаются неудобными для практического пользования, кроме того, в них входит значение То, для определения которого необходимо все равно считать кривую автокорреляционной функции. Поэтому эти выражения здесь не приводим. [c.275]

    Следующий способ определения формы аномальных тел годится только для случая знакопеременных гравитационных и магнитных аномалий. Он основан на использовании произведения радиуса корреляции г на ширину энергетического спектра аномалий Р. [c.298]

    Кроме того, в данной главе впервые изложена методика определения и применения радиусов взаимной корреляции значений исходной аномалии и ее производных первых двух порядков. [c.351]

    Значения радиусов автокорреляции или просто корреляции получили широкое применение на практике при анализе аномалий потенциальных полей. В литературе дана методика их определения, получены аналитические выражения, определяющие их для аномалий от наиболее часто применяющихся на практике источников правильной формы, приведены примеры их использования на практике при анализе и интерпретации аномалий гравитационных и магнитных полей. [c.368]

    Радиусы взаимной корреляции имеют на практике при интерпретации аномалий такое же значение, что и радиусы автокорреляции, поэтому их определение очень важно. [c.368]


Смотреть страницы где упоминается термин Определение радиуса корреляции аномалий: [c.198]   
Смотреть главы в:

Спектральный анализ гравитационных и магнитных аномалий -> Определение радиуса корреляции аномалий




ПОИСК





Смотрите так же термины и статьи:

Радиус корреляции

Радиус корреляции определение



© 2025 chem21.info Реклама на сайте