Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристалл дырки в энергетическом спектре

    Электронная структура оксидных катализаторов — полупроводников отличается от структуры металлов наличием энергетического разрыва (запрещенной зоны), отделяющего нижнюю валентную зону, полностью заполненную электронами, от верхней незаполненной зоны проводимости. Энергетический разрыв невелик, и в полупроводниках при какой-либо активации (повышение температуры, излучения) происходит переход электронов из валентной зоны в зону проводимости. Освободившиеся при этом переходе энергетические уровни в валентной зоне рассматриваются как дырки в энергетическом спектре кристалла. Свободные электроны и дырки с точки зрения электронной теории катализа рассматриваются как свободные валентности твердого катализатора, участвующие в поверхностном химическом взаимодействии с реагирующими веществами. Молекулы, адсорбированные на поверхности полупроводника, рассматриваются как примеси, нарушающие строго периодическое строение кристаллической решетки, но составляющие с ней единую систему, так как волновые функции решетки и молекул, сидящих на ее поверхности, перекрываются. [c.225]


    Однако экситоны, часто описываемые в случае неорганических соединений, являются экситонами Мотта [103] возбужденный электрон и дырка одновременно не относятся только к одному центру, но находятся на расстоянии друг от друга, которое в среднем составляет величину от одного до нескольких параметров решетки. У молекулярных кристаллов уровни экситонов занимают широкую область энергетического спектра, которая в значительной степени расширяется колебаниями, особенно когда уровни находятся вблизи границы интенсивного поглощения. Этот вопрос будет рассматриваться в следующей книге этой серии. У антрацена наблюдалось размытие уровней экситонов приблизительно от 3 до 8 эб в зависимости от расположения плоскости поляризации света в направлении а или Ь [88]. В большинстве случаев поглощение, без сомнения, было обусловлено образованием экситонов, соответствующих возбужденным состояниям индивидуальных молекул, что доказывается сравнением коэффициентов экстинкции в спектрах молекул и кристаллов [88]. Тем не менее подобное описание с точки зрения теории экситонов Френкеля является, конечно, неполным, так как при энергии поглощенного света даже меньше 8 эв возникают и фотопроводимость и фотоэмиссия электронов, не говоря уже о фотохимической диссоциации. Даже если наблюдаемая фотопроводимость не вызвана освобождением носителей внутри чистого вещества, что кажется вполне возможным [15], то существует фотоэлектронная эмиссия, показывающая (раздел 11,4), что внешний фотоэлектрический эффект связан с ионизацией молекул внутри кристалла. Поглощение, вызывающее эмиссию, по-видимому, непрерывно и может обусловливаться образованием экситонов. [c.662]

    Одновалентный атом А (например, атом водорода), взаимодействуя с поверхностным катионом, может связаться с ним одноэлектронной ела-бой связью, которая аналогична химической связи в молекуле Щ. Адсорбированный таким образом атом представляет собой ловушку для электрона или для дырки, коль. скоро его энергетический уровень занимает подходящее положение в энергетическом спектре кристалла. [c.135]

    Энергетический разрыв невелик, и в полупроводниках при какой-либо активации (повышение температуры, излучения) происходит переход электронов из валентной зоны в зону проводимости. Освободившиеся при этом переходе энергетические уровни в валентной зоне рассматриваются как дырки в энергетическом спектре кристалла. Свободные электроны и дырки с точки зрения электронной теории катализа рассматриваются как свободные валентности твердого катализатора, участвующие в поверхностном химическом взаимодействии с реагирующими веществами. Молекулы, адсорбированные на поверхности полупроводника, рассматриваются как примеси, нарушающие строго периодическое строение кристаллической решетки, но составляющие с ней единую систему, так как волновые функции решетки и молекул, сидящих на ее поверхности, перекрываются. [c.245]


    Рассмотрим далее другой возможный механизм миграции энергии электронного возбуждения от решетки твердого тела к адсорбированным молекулам-экситонный. Согласно простейшим представлениям экситон является нейтральным возбужденным состоянием, в котором электрон и дырка образуют связанную пару, которая может мигрировать по решетке кристалла как одно целое. Энергетический спектр экситона является дискретным и уровни энергии лежат несколько ниже дна зоны проводимости (рис. 3.11). На опыте существование экситонов можно наблюдать в ряде случаев по появлению узких линий в спектре кристалла вблизи длинноволновой границы фундаментального поглощения. [c.66]

    Для механизмов катализа существенно наличие двух типов полупроводников п-полупроводников с электронным типом проводимости и р-полупроводников с дырочным типом проводимости. Рассмотрим эти понятия. Если в результате дефекта поверхности или решетки кристалла, включения иримеси, нарушения стехиометрии в многокомпонентном полупроводнике на одном из атомов решетки образуется избыточный отрицательный заряд, то он будет странствовать по решетке, создавая электронную проводимость. Кристалл при этом остается электронейтральным, что, например, видно при включении нейтрального атома Си в решетку Си 0 ".. Аналогично, наличие электронной вакансии, т. е. свободной дырки, означает, что один из атомов решетки несет избыточный положительный заряд, наиример ион Си++ в той же решетке СиТО". В энергетическом спектре полупроводника появление таких избыточных электронов или образование дырок приводит к появлению, соответственно, донорных или акцепторных локальных уровней, с которых либо электроны легко переходят в зону проводимости, образуя электронный полупроводник, либо электроны из валентной зоны [c.31]

    В первом случае поглощение сопровождается либо переходом электронов внутри электронной оболочки активатора на более высокие энергетические уровни, либо полным отрывом электрона от активатора и переходом активатора ионизованное состояние (образуется дырка ). Во втором случае, при поглощении энергии основой, в основном веществе образуются дырки и электроны. Дырки могут мигрировать по кристаллу и локализоваться на центрах люминесценции. Излучение происходит в результате возвращения электронов на более низкие (исходные) энергетические уровни Или при воссоединении (рекомбинации) электрона с ионизованным центром (дыркой). Люминофоры, в которых люминесценция (поглощение и излучение энергии) связана с электронными переходами в пределах люминесцентного центра, получили название характеристических. Активаторами в таких люминофорах являются ионы переходных и редкоземельных элементов, а также ртутеподобные ионы. Кри- еталлическая решетка основы, как правило, мало влияет на электронные переходы внутри центра, поэтому спектры возбуждения и люминесценции в основном определяются природой активатора. [c.5]

    Центральной проблемой хемосорбции и катализа является вопрос о природе активных центров и реакционной способности адсорбированных молекул. В данной статье рассматриваются случаи полупроводников и диэлектриков. Электронная теория хемосорбции (ЭТХ) 11—3] принимает в качестве активных центров электроны и дырки кристалла полупроводника, которые либо свободно перемещаются по поверхности, либо локализованы на ее структурных дефектах. Хемосорбция есть результат взаимодействия адсорбированной молекулы с этими центрами. Хемосорбированные молекулы, рассматриваемые как некоторая поверхностная примесь, создают в энергетическом спектре кристалла свою систему локальных уровней. В условиях равновесия заселенность уровней однозначно определяется положением уровня Ферми на поверхности. В соот ветствии с этим ЭТХ рассматривает две формы хемосорбции нейтральную (слабую) форму, когда связь молекулы с поверхностью осуществляется без участия свободных носителей решетки (в энергетическом спектре ей соответствуют пустые уровни), и заряженную форму, при которой происходит локализация носителя на адсорбированной частице или около нее (заполненные уровни). Локализация носителя упрочняет (адсорбционную связь и приводит к заряжению поверхности относительно объема полупроводника. Согласно ЭТХ, вовлечение в хемосорбционную связь свободных носителей вызывает возникновение радикальных (или ионо-радикальных) форм хемосорбции или валентно-насыщенных соединений частиц с поверхностью [1—3]. Поскольку радикальная форма реакционно способна, ЭТХ для случая однородной поверхности установила связь каталитической активности поверхности с положением локальных уровней хемосорбированных частиц и уровня Ферми в ее энергетическом спектре. [c.25]

    Возбуждение электрона в зону проводимости, отвечающее полной ионизации, приводит к возникновению свободных электрона и дырки, способных независимо двигаться под действием приложенного поля. Существует и другая возбужденная конфигурация (экситон — см. главы П, V) с более низкой энергией, с которой электрон и дырка движутся как связанные нейтральные образования. Экситон Френкеля (см. гл. II) совершенно аналогичен позитронию (связанной позитрон-электронной паре) и энергетические уровни этого экситона, так же как и позитрония, задаются боровской моделью атома водорода с заменой массы свободного электрона на приведенную массу т . Далее, так как экситон существует в кристалле, а не в вакууме, кулоновское взаимодействие ослабляется за счет диэлектрической проницаемости. Поэтому энергетический спектр экситона (рис. 174) задается выражением [8, 41 [c.421]


    Большинство неметаллических катализаторов обладает полупроводниковыми свойствами, поэтому заманчиво использовать это их свойство в качестве ключа к раскрытию природы активности. Такая возможность связана со способностью полупроводника обмениваться зарядом с адсорбированной частицей, принимая или отдавая электрон. Согласно существующей теории, центром хемосорбции (активным центром) является свободный электрон (или дырка ) полупроводника. Адсорбированные атомы или молекулы рассматриваются как примеси, нарушающие строго периодическую структуру решетки. В энергетическом спектре кристалла они могут быть изображены локальными уровнями, расположенными в запрещенной зоне полупроводника (см. гл. V). Разные частицы занимают различные уровни в запрещенной зоне. Если реагирующая частица занимает уровень, расположенный ближе к зоне проводимости, т. е. уровень адсорбированной частицы находится выше уровня Ферми на поверхности, то все хемосорбционные частицы являются донорами электронов. Если же уровень адсорбированной частицы ниже уровня Ферми, она является акцептором электронов. Таким образом, адсорбционная способность и каталитическая активность поверхности полупроводника определяются взаимным расположением локального уровня адсорбированрой частицы и по,ложением уровня Ферми на поверхности. Реакция называется акцепторной, если скорость 472 [c.472]

    Будем предполагать для определенности, что атомы активатора являются донорами (изображаются донорными локальными уровнями в энергетическом спектре кристалла). Все дальнейшее может быть легко обобщено на случай, когда атомы активатора являются акцепторами. Обозначим через АЬ нейтральный атом активатора через еЬ и рЬ — соответственно свободный электрон и свободную дырку в решетке через АрЬ — ионизованный атом активатора (атом активатора с локализованной на нем дьфкой) здесь Ь —символ решетки. [c.181]

    Зонную теорию обычно используют для описания ионных кристаллов [104], которые, как правило, являются хорошими изоляторами. Полагают поэтому, что ее можно применять также при описании молекулярных кристаллов. Например, с использованием этой теории рассматривались электрические свойства кристаллов Ь и Зв [102], а также электрические свойства кристаллов типа антрацена [33]. Однако при рассмотрении молекулярных кристаллов встретились затруднения, которых не возникает, например, в случае ковалентных кристаллов типа германия или соединений двух элементов. Бьюб [18] приводит более 100 таких соединений, имеющих тесное соответствие между энергетической щелью и длинноволновой границей поглощения. Изучение всех этих кристаллов несколько осложнено наличием экситонов их спектр вполне определяется энергетической щелью. Дополнительной характеристикой служит и то, что вообще в таких соединениях эффективная масса электрона (а также дырки) имеет примерно тот же порядок величины, что и масса свободного электрона. Молекулярные кристаллы, такие, как антрацен, отличаются от только что обсуждавшихся неорганических соединений тем, что начало сильного поглощения у них непосредственно не связано с энергетической щелью между нижней зоной и зоной проводимости. Край поглощения кристаллом непосредственно связан с краем погло- [c.661]


Смотреть страницы где упоминается термин Кристалл дырки в энергетическом спектре: [c.25]   
Инженерная химия гетерогенного катализа (1965) -- [ c.25 , c.27 , c.30 ]




ПОИСК





Смотрите так же термины и статьи:

Дырки

Спектр энергетический



© 2025 chem21.info Реклама на сайте