Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катодная защита критерий эффективности

    Проведем анализ использования критериев эффективности катодной защиты. [c.118]

    Конечный результат - данные по величине потенциалов (включения и выключения) и воронок напряжений, по которым можно судить о степени потенциальной защищенности трубопровода по протяженности (эффективности катодной защиты относительно критерия защитный потенциал ) и состоянии изоляционного покрытия (наличия и количества повреждений в нем). [c.100]


    На практике эффективность катодной защиты можно установить несколькими способами, и в прошлом для доказательства полноты защиты использовали ряд критериев. Можно, например, для действующего подземного трубопровода построить зависимость числа наблюдаемых сквозных разрушений от времени эксплуатации, на которой будет видно, что после начала использования катодной защиты число сквозных разрушений резко уменьшается или падает до нуля. При защите кораблей можно через определенные интервалы времени обследовать корпус для определения глубины образующихся язв. [c.225]

    Катодная защита основана на наложении отрицательного потенциала от внешнего источника тока на металл, при этом значительно замедляется процесс его ионизации, а в реакцию деполяризации вступают электроны не с металла, а от внешнего источника тока. При этом положительный полюс источника тока подсоединяется к анодному заземлителю. Обязательным условием катодной защиты является наличие токопроводящей среды (природные почва, вода и т.п.) между защищаемым сооружением и анодным заземлителем. Критериями эффективности катодной защиты являются защитный потенциал и плотность тока. [c.4]

    Катодная защита возможна только в том случае, когда защищаемая конструкция и анодное заземление находятся в электронном и электролитическом контакте первое достигается с помощью металлических проводников, а второе — благодаря наличию электролитической среды (грунта), в которую погружаются защищаемая конструкция и анодное заземление. Катодная защита регулируется путем поддержания необходимого защитного потенциала, который измеряется между конструкцией (или датчиком поляризационного потенциала) и ЭС. Обычно ЭС служит МЭС длительного действия, находящийся постоянно в электролитической среде (грунте). Потенциал между ЭС и защищаемой конструкцией, измеряемый высокоомным вольтметром, включает в себя кроме поляризационной составляющей омическое падение напряжения 1Я, обусловленное прохождение катодного тока / через эффективное сопротивление между электродом сравнения и защищаемой конструкцией. Только поляризация на поверхности защищаемой конструкции обусловливает эффект катодной защиты [1—3]. Поэтому критериями защищенности являются минимальный и максимальный защитные поляризационные потенциалы. Таким образом для точного регулирования поляризационного потенциала защищаемой конструкции по отношению к электроду сравнения из измеренной разности потенциалов должна быть иллюминирована (исключена) величина омической составляющей. Это достигается применением специальной схемы измерения поляризационного потенциала [4]. [c.239]


    ПРАКТИЧЕСКИЕ КРИТЕРИИ ЭФФЕКТИВНОСТИ КАТОДНОЙ ЗАЩИТЫ УГЛЕРОДИСТЫХ И НИЗКОЛЕГИРОВАННЫХ СТАЛЕЙ В ГРУНТЕ [c.101]

    Для кабелей со свинцовой оболочкой, а также и для других кабелей, имеющих малое переходное сопротивление на землю, потенциал выключения не всегда может быть применен как критерий эффективности катодной защиты, поскольку у них выключается и часть электрохимической поляризации (см. раздел 3.3.1). Поэтому для кабелей связи со свинцовой оболочкой для приближенной оценки обычно используют потенциал включения. В табл. 14.1 представлены стационарные и защитные потенциалы подземных кабелей. Дополнительные сведения о предельных потенциалах имеются в разделе 2.4. [c.300]

    Плотность защитного тока, как критерий катодной защиты стали, с достаточной точностью может быть определена на макромодели гальванического элемента. Моделью служит железная пластина с анодными (очищенное железо) и катодными (окалина) участками. При изменяющейся плотности катодного тока измеряют катодную и анодную поляризации и по найденным величинам строят эквипотенциальные кривые. Поляризационные кривые пересекаются в точке, которая соответствует плотности эффективного защитного тока. [c.794]

    Критериями для оценки состояния (эффективности) катодной защиты и изоляционных покрытий подземных трубопроводов являются величины  [c.100]

    Для оценки эффективности катодной защиты от коррозии — за исключением случая грунтов с очень высоким электросопротивлением — как практический критерий может быть использован и потенциал включения и u/ uSOi = 1>5 В. При такой величине Uein даже и при наличии блуждающих токов никакой опасности коррозии не может быть [5]. [c.313]

    Разработка материалов покрытия более высокого качества может привести и к повышению требований к подготовке поверхности. В общем случае в настоящее время при струйной (дробеструйной) очистке требуют обеспечивать нормативную степень чистоты Sa 2V2 [16] и возможности сразу же наносить покрытие. Другие способы подготовки, например огнеструйная (огневая) зачистка, отходят на задний план. Критерии совместимости с катодной защитой нуждаются еще в уточнении в ходе дальнейших исследований. Одним из основных требовании является применение связующих, прочных против омыления, и пигментов (красителей), стойких к восстановлению. Еще одним влияющим фактором может быть проводимость для щелочных нонов. Этот фактор однако пока не исследован, но качественно оценивается по величине сонротивления покрытия. Соответствующие требования должны предъявляться и к протнвообрастающим покрытиям. При слишком сильном омылении связующих они могут очень сильно набухать или выщелачиваться, вследствие чего эффективность их действия будет потеряна. [c.357]

    Наибольшая производительность насоса составляет 28 м -ч при частоте вращения 1450 мин . Площадь внутренней поверхности с катодной защитой составляет 900 см (555 см кольцевого пространства корпуса -1-155 нагнетательного патрубка -fl90 см всасывающего патрубка). При нагнетании раствора 0,1 М НС1 с температурой 50 °С при частоте вращения 1420 мин- был достигнут хороший защитный эффект в кольцевом корпусе и всасывающем патрубке при плотности защитного тока 45—50мА-М и в нагнетательном патрубке прн плотности защитного тока 20 мА-м- движущее напряжение в обоих защитных контурах составляло 2,6 В. Для практического применения следует иметь в виду, что с повыщением частоты вращения рабочего колеса защитный ток тоже резко увеличивается. Требуемый защитный ток в зависимости от среды и условий эксплуатации целесообразно определять на самом насосе, причем в качестве результата измерений следует использовать содержание продуктов коррозии в объекте защиты. В рассматриваемом случае за критерий эффективности защиты целесообразно принять небольшие содержания ионов меди. При хорошем регулировании защитного тока эти содержания колеблются в пределах 0,02—0,05 мг-л- кислоты. [c.390]


Смотреть страницы где упоминается термин Катодная защита критерий эффективности: [c.83]   
Катодная защита от коррозии (1984) -- [ c.100 , c.300 ]




ПОИСК





Смотрите так же термины и статьи:

Защита катодная

Критерий эффективности ХТС

Ток катодный

Эффективность защиты



© 2025 chem21.info Реклама на сайте