Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

КАРС когерентное антистоксово рассеяние света

    Повышения интенсивности рассеянного света можно добиться с помощью достаточно интенсивных световых потоков или мощных лазеров. Качество регистрации рассеянных квантов можно повысить, имея совершенное оптическое и электронное оборудование. Применение лазеров стимулировало развитие этой, уже ставшей классической, области спектроскопии. Лазеры не только повысили чувствительность спектроскопии обычного (спонтанного) комбинационного рассеяния, но и стимулировали развитие новых методов, основанных на вынужденном, например на антистоксовом, комбинационном рассеянии, носящем название когерентного антистоксового рассеяния света (КАРС) или, в частности, резонансного комбинационного рассеяния (РКР). При возрастании интенсивности падающего лазерного излучения становится значительной интенсивность рассеянного стоксового излучения. В этих условиях происходит взаимодействие молекул одновременно с двумя электромагнитными волнами лазерной vл и стоксовой V т = Vл — v , связанных между собой через молекулярные колебания с VI,. Такая связь (энергетическая) между излучением накачки и стоксовой (или антистоксовой) волной может привести к интенсивному поляризованному излучению на комбинационных частотах, другими словами— к вынужденному комбинационному рассеянию. Причем в этих условиях оказывается заметной доля молекул, находящихся в возбужденном колебательном состоянии, и в результате на частотах Гл + VI, возникает интенсивное антистоксово излучение. [c.772]


    Когерентное антистоксово рассеяние света (КАРС) связано с третьим членом в разложении (1), содержащим поляризуемость третьего порядка у. При одновременном облучении образца двумя лазерами с частотами [c.437]

    Помимо обычных одноквантовых переходов, в каждом из к-рых поглощается или испускается один квант энергии, возможны многофотонные процессы, представляющие собой либо последовательность неск. одноквантовых переходов, либо один К. п. системы между двумя квантовыми состояниями, но с излучением или поглощением неск. квантов одинаковой или разной энергии. Вероятность многоквантовых переходов быстро уменьшается с понижением интенсивности взаимодействующего с в-вом электромагн. излучения, поэтому их исследование стало возможным лишь благодаря применению лазеров. Простейший двухквантовый процесс-комбинац. рассеяние света, при к-ром частица (атом, молекула) одновременно поглощает квант энергии и испускает квант меньшей или большей энергии. При последоват. поглощении молекулой двух квантов света возможны в ряде случаев фотохим. р-ции (см. Двухквантовые реакции). Четырехквантовый переход является, напр., основой метода когерентного антистоксова рассеяния света (КАРС) (см. Комбинационного рассеяния спектроскопия). С помощью этого метода удается изучать такие состояния, переходы в к-рые запрещены при одноквантовых переходах. [c.368]

    Примерами нелинейного рассеяния являются гиперкомби-национное рассеяние, вынужденное комбинационное рассеяние, когерентное антистоксово рамановское рассеяние (КАРС). Гиперкомбинационное рассеяние света заключается в том, что в отличие от линейного рассеяния (см. разд. 5.2.5) в неупругом столкновении с частицей А( ) участвуют два фотона с частотой VI. В результате образуется молекула в другом энергетическом состоянии и один фотон, имеющий энергию hvj. А(Е )+2 Av, [c.125]


Физические методы исследования в химии 1987 (1987) -- [ c.288 ]




ПОИСК





Смотрите так же термины и статьи:

Когерентность

Рассеяние антистоксово когерентное

Рассеяние когерентное

Рассеяние света

Рассеяние света антистоксово

Рассеяние света когерентное



© 2025 chem21.info Реклама на сайте