Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Клетки развитие

    Особым разделом химии колхицина и его аналогов следует признать взаимодействие с тубулином, белком микротрубочек, являющимся рецептором этих препаратов. Микротрубочки - групповое название класса компонентов разнообразных эукариотических клеток. Они представляют собой прямые цилиндры диаметром 240+20 8 с пустотой диаметром 150 8 в середине. Во всех известных случаях деления ядра микротрубочки образуют волокнистый остов веретена функции микротрубочек передвижение хромосом при делении клетки, развитие и сохранение формы клетки, внутриклеточное перемещение вещества, подвижность клетки, передача раздражения [c.68]


    В свете успехов генетического анализа микроорганизмов представлялось многообещающим изучение проблем генетики человека на отдельных клетках. Развитие этого подхода описано в разд. 4.2.2.1. Принимая во внимание низкую частоту спонтанных мутаций и методические сложности, затрудняющие изучение популяционных выборок, размер которых был бы достаточен для получения даже грубой оценки на уровне индивида, можно было предположить, что реализация подхода на уровне отдельных клеток увеличила бы разрешающую способность генетического анализа на несколько порядков. [c.193]

    В многоклеточных растительных и животных организмах существует физиологическое разграничение функций, определяющее специализацию клеток различных тканей. Но при этом каждая клетка несет полную генетическую информацию, которая находится либо в активном, либо в репрессированном виде. Отсюда возникла возможность выращивания полноценного растения лишь из одной единственной соматической клетки. Развитие и специализация клеток многоклеточного растения — результат последовательного избирательного включения различ- [c.10]

    Развитие методов определения детальной структуры вирусов и генетических компонентов клетки [c.524]

    Минеральными удобрениями называют соли, содержащие элементы, необходимые для питания растений и вносимые в почву для получения высоких и устойчивых урожаев. В состав растений входят около 60 химических элементов. Для образования ткани растения, его роста и развития требуются в первую очередь углерод, кислород и водород, образующие основную часть растительной массы, далее азот, фосфор, калий, магний, сера, кальций и железо. Источниками веществ, необходимых для питания растений, служат воздух и почва. Из воздуха растения извлекают основную массу углерода в виде диоксида углерода, усваиваемого путем фотосинтеза, а из почвы — воду и минеральные вещества. Некоторое количество диоксида углерода воспринимается корневой системой растений из почвы. Среди минеральных веществ особенно важны для жизнедеятельности растений азот, фосфор и калий. Эти элементы способствуют обмену веществ в растительных клетках, росту растений и особенно плодов, повышают содержание ценных веществ (крахмала в картофеле, сахара в све-кле, фруктах и ягодах, белка в зерне), повышают морозостойкость и засухоустойчивость растений, а также их стойкость к заболеваниям. При интенсивном земледелии почва истощается, т. е. в ней резко снижается содержание усваиваемых растениями минеральных веществ, в первую очередь растворимых в воде и почвенных кислотах соединений азота, фосфора и калия. Истощение почвы снижает урожайность и качество сельскохозяйственных культур. Уменьшение содержания питательных веществ в почве необходимо постоянно компенсировать внесением удобрений. Ввиду огромных масштабов потребления минеральные удобрения— наиболее крупнотоннажный вид химической продукции, годовое количество которой составляет десятки миллионов тонн. [c.143]


    Параметры процесса брожения выбирают исходя из оптимальных условий жизнедеятельности дрожжевых клеток и подавления развития их спутников — кислотообразующих бактерий молочнокислого и уксуснокислого брожения. Оптимальные температуры размножения дрожжевых клеток и развития бактерий практически совпадают. Чтобы подавить развитие бактерий повышают кислотность среды, вводя в гидролизат серную или молочную кислоты. При рН<4,2 дрожжевые клетки интенсивно растут, а бактерии не размножаются. Поэтому в производстве процесс брожения проводят при температуре 27— 30°С, атмосферном давлении и в слабо кислой среде (pH = 3,8— 4,0). [c.280]

    Реакции сопряженного гидрирования играют исключительно важную роль в биохимических процессах (окислительно-восстановительные, или редокс-процессы). Катализированные металлами группы Р1 реакции перераспределения водорода в органических молекулах являются моделями биохимических процессов, в которых катализаторами служат ферменты. Н. Д. Зелинский в одной из статей писал В живой природе имеется широкое поле течения и развития каталитических процессов. В клетках живого вещества рассеяны ускорители (катализаторы) с характерной специфичностью их действия. Особенно большую роль играют восстановительно-окислительные реакции в присутствии катализаторов, вырабатываемых живым веществом, каковыми и являются ферменты и энзимы. Гармоническое сочетание совокупности действия таких катализаторов представляет одно из главных условий жизни животного и растительного организма [10]. [c.447]

    Некоторые коферменты служат переносчиками химических групп, атомов водорода или электронов. Другие, такие, как ЛТР, участвуют в энергетических процессах внутри клетки и часто рассматриваются скорее как субстраты, а не как коферменты. Известны коферменты и с более сложной структурой, которые относятся к производным витаминов. Они действуют в активном центре фермента, соединяясь с субстратом и облегчая таким образом протекание реакции. Витамины не могут синтезироваться в организме животных и, следовательно, должны поступать с пищей. Таким образом, нх наличие необходимо для нормального развития здорового организма, а нх отсутствие вызывает специфические болезни, илп, иначе, витаминную недостаточность. [c.398]

    Основанный на представлении о жизненной силе принцип разделения химических соединений на неорганические и органические должен был бы мгновенно рухнуть, если бы в лаборатории при помощи неорганических сил было синтетически получено вещество, образующееся также и в живой клетке. Это удалось сделать Велеру, который в 1824 г. получил из дициана щавелевую кислоту, а в 1828 г, из циановокислого аммония — мочевину последний синтез имел особенно большое значение для дальнейшего развития органической химии. Однако гипотеза [c.2]

    Системно-структурная суть систем химических элементов состоит в строгом закреплении за каждым видом атомов клетки в таблице (их чуть больше сотни), а систем изотопов — 3 закреплении за каждым подвидом атомов своего собственного места (точки) с определенными координатами на графической модели (их более 1700). Как свидетельствует долгая история науки, процесс познания материи не всегда согласуется с логикой и генетикой развития самой природы. Нередко [c.80]

    Все животные и растительные ткани состоят из различных химических соединений белков, углеводов, жиров и витаминов. И хотя все эти вещества необходимы для нормального развития организма, наибольшее значение имеют белки. Именно они служат той основной материей, из которой состоят все части отдельной клетки и целого организма. Белки являются высшей ступенью развития материи и с ними неразрывно связаны все неисчислимо многообразные проявления жизни, начиная с простейших функций самых примитивных существ и кончая сложнейшими функциями человеческой деятельности. [c.336]

    Размножаются диатомовые водоросли или вегетативным делением клетки, или ауксоспорами. При вегетативном делении каждая часть получает материнскую створку, а недостающая створка вырастает заново при развитии клетки. [c.271]

    Микроорганизмы приспосабливаются к окружающей среде и всякое нарушение оптимальных условий приводит к подавлению их развития и даже к отмиранию. Губительно действуют на микробную клетку изменение pH среды, нарушение кислородного режима, резкое изменение температуры, истощение питательных веществ, действие прямых солнечных лучей, а также и биологические факторы. Например, он и погибают вследствие лизиса (растворения их клеток бактериофагом) и вследствие антагонизма с другими бактериями. [c.283]

    Кальций. Этот элемент способствует развитию корневой системы. Нейтрализуя кислотность в клетках растений, он тем самым повышает их устойчивость при повышенной кислотности почвы. В почву кальций вносится в виде солей фосфорной и азотной кислот (нитрат кальция), мела, известняка, жженой и гашеной извести, доломитовой муки и других кальцийсодержащих соединений. [c.235]


    Следующий, четвертый путь в развитии исследований, ориентированных на применение принципов биокатализа в химии и химической технологии, характеризуется постановкой самой широкой задачи — изучением и освоением всего каталитического опыта живой природы, в том числе и опыта формирования выходного устройства — фермента, клетки, организма. Это такая ступень, на которой возникают основы эволюционной химии как действенной науки с ее эвристическими и рабочими функциями, как пролога к принципиально новой химической технологии, способной стать аналогом живых систем. [c.185]

    Вопрос о возникновении свободных радикалов в биологических системах представляет особый интерес, так как, с одной стороны, процессы их генерации часто составляют необходимое звено био-. логического процесса, а с другой — свободнорадикальное состояние является источником опасности для клетки и связано с развитием специальных механизмов защиты. [c.320]

    Развитие радиоизотопных методов позволило получить точные количественные данные о скоростях обновления в организмах биологически активных соединений. Было показано, что клетка много раз обновляет свой состав за время своего существования. Особенно интересно, что скорость замены той или иной составной части макроструктуры (например, мембраны) зависит от химической природы этой части и скорости переноса ее от места синтеза к месту функционирования высокая степень кинетической согласованности обеспечивает сохранение всей макроструктуры. Время полужизни ядерных белков около 120 ч, белков плазматической мембраны —50, фосфолипидов — от 15 до 80, холестерина от 24 до 140, цитохрома (65) —около 100 ч и т. д. [c.347]

    Роль РНК в процессе синтеза белка была подтверждена опытами, выполненными в начале 60-х годов. Из бактериальных клеток была получена бесклеточная жидкость, содержавшая все необходимые для синтеза белка ферменты, ранее находившиеся в клетке. Эта система была способна в течение некоторого времени осуществлять синтез белка, однако затем он замедлялся. В этот момент добавляли РНК и наблюдали возобновление синтеза белка. Можно было добавить и не природную, а синтетическую РНК синтез белка продолжался и в этом случае. Когда добавка состояла из синтетической РНК, содержащей только один нуклеотид—урацил, образовывался полипептид, состоящий исключительно из фенилаланина. Дальнейшее развитие подобных опытов позволило расшифровать генетический код установить, что каждая аминокислота имеет свои шифры , записанные в виде последовательности трех нуклеотидов. [c.343]

    Жизнь на Земле существует по крайней мере столько же, сколько и самые ранние осадочные породы, ископаемые микроорганизмы в которых свидетельствуют об обильной жизни 3,5 млрд. лет назад (3,5-Юэ лет). Первоначальный вклад кислорода в атмосферу давали утерявшие ядро бактериальные клетки. Клетки животных, растений и грибов имеют ядро, но нуждаются в кислороде в относительно больших количествах. Произошла революция, когда кислород стал более доступным в атмосфере и появились ядерные клетки, а затем животная н растительная жизнь. Дыхание и широкомасштабный фотосинтез стали важными процессами на этой стадии, вероятно, когда концентрация кислорода составила примерно 10 САУ в некоторый момент времени между 2,0 и 0,57 млрд. лет назад, захватывая начало кембрийского периода (0,57 млрд. лет назад). С началом кембрийского периода сложность форм жизни, как известно, стала быстро возрастать, и были заложены основы всех современных ветвей организмов. Развитые, уже не микроскопические, формы жизни были найдены на берегу (на [c.213]

    Дифференциация происходит в результате взаимодействия генетической программы и факторов окружающей среды. Вещества, которые эффективно стимулируют дифференциацию и рост клетки, называются трофическими факторами они могут продуцироваться органами-мишенями данного нейрона, окружающими его глиальными клетками или одним из иннервированных нейронов. Если мы вспомним ганглионарные клетки симпатических нервов, то увидим, что действие не нейрональных клеток осуществляется как в ортоградном (антероградном), так и ретроградном направлениях. Кроме такой межсинаптической регуляции, трофические факторы играют определенную роль в выживании клетки, миграции клетки, развитии нейритов (аксонов или дендритов) в направлении их мишеней, образовании и стабилизации специфических синапсов. Трофические факторы актив- [c.323]

    Метилотрофы, отнесенные к семейству Methylo o a eae, грамотрицательные эубактерии с разной морфологией и размерами клеток, подвижные или неподвижные. Некоторые штаммы образуют цисты. Характерной особенностью при росте на метане является наличие в клетке развитой системы внутрицитоплазматических [c.395]

    Спонтанно, без воздействия извне лизогенные бактерии лизируются редко. Однако целый ряд факторов (ультрафиолетовые лучи, митоми-цин С или алкилирующие агенты) может индуцировать в каждой клетке развитие профага, ведущее к образованию и высвобождению инфекционного фага. Успех такой индукции зависит от генетической конституции профага, физиологического состояния хозяина и условий культивирования. Индукция связана, очевидно, с устранением или инактивацией имеющихся молекул репрессора. Некоторые мутанты умеренных фагов образуют термолабильный репрессор, и тогда достаточно уже повышения температуры до 44°С, чтобы вызвать лизис бактерий. I [c.148]

    Пятна на листьях округлые или неправильной формы, расплывчатые или ограниченные жилками, преимущественно красно-бурого цвета, к периферии более темные. Конидиальное спо-ропошение возбудителя образуется на верхней стороне листа в виде очень мелких черных подушечек, закладывающихся под эпидермисом, а затем разрывающих его. Конидии двухклеточные, бесцветные, с более вытянутой и слегка изогнутой верхней клеткой. Развитие болезни усиливается при высокой влажности, особенно во второй половине лета. Зимует гриб на отмерших или зимующих зеленых листьях земляники в виде грибницы или конидиального спороношения. [c.241]

    Влияние инфекции на пораженную клетку. Микроспоридии развиваются только внутриклеточно, и лишь после разрушения зараженной клетки вегетативные стадии паразита высвобождаются и переходят в гемолимфу, где их можно обнаружить. После более или менее длительного передвижения с гемолимфой паразит проникает через оболочку клетки и начинает делиться в ее цитоплазме, не поражая ядра клетки. Развитие схизонтов в клетке приводит к ее увеличению по мере разрушения клетки ее ядро дегенерирует и в конечном итоге распадается на гранулы хроматина. Соседние клетки под воздействием инфекции смыкаются, и возникают все более и более увеличиваюшиеся псевдоцисты — скопления спор, которые используют в качестве оболочки оболочки клеток пораженных органов. Жир и гликоген плазмы клетки исчезают, и образуются вакуоли, в которые проникают паразиты. На микроскопических срезах хорошо заметны такие изменившиеся участки жирового тела, и по ним хорошо видна граница зоны распространения паразита в тканях органа. [c.461]

    Механизм действия бактериофагов на бактериальную клетку заключается в следующем. Бактериофаг состоит из белковой оболочки, в которой находится дезоксирибонуклеиновая кислота (ДНК) фага. При попадании одной фаговой частицы в культуру чувствительных к данному фагу бактерий, которые активно размножаются в жидкой питательной среде, она адсорбируется с помощью отростка на бактериальной клетке н разрыхл5Гет ее оболочку с помощью специального фермента. Затем белковая оболочка сокращается и ДНК фага впрыскивается в цитоплазму бактериальной клетки. Развитие бактериальной клетки прекращается, и в ней начинается синтез ДНК фага и его белка. В это время в клетке нельзя обнаружить частиц бактериофага. Только через 45—60 мни после созревания фага клетка набухает и оболочка ее разрывается (рис. 5), При лизисе клетки выходит около 100 частиц фага. На это.м заканчивается первый цикл размножения. бактериофага Около 100 частиц инфицируют 100 новых клеток бактерий, и начинается второй цикл размножения. Так продолжается до тех пор, пока ие лизируются все чувствительные клетки бактерий. [c.30]

    Конечно, это минимальная схема. Иногда включаются и другие экраны наднадсистема (лес) и"подподсисте-ма (клетка листа). А главное — все это видно в развитии, потому что работают боковые экраны, показываю-щие прошлое й будущее на каждом уровне. Девять (минимум девять ) экранов системно и динамично отражают системный и динамичный мир (рис. 7). [c.56]

    Улучшает неренос энергии в клетке. 2, Сиин ает содержание белка в биомассе. 3. Способствует размножению клетки и иаконле-ыию белка. 4. Обеспечивает нормальное развитие микрооргапн.1мов. [c.290]

    Нормальное развитие микроорганизмов, поглощение клетками парафина, активизирует действие многих ферментов н стабилизирует содержание нуклеиновых кислот. 2. Высокое содержание нуклеиновых кислот в биомассе, активизирует действие многих ферментов, стимулирует поглощение клетками парафина. 3. Нормальное развитие микроорганизмов, накопление белка, утилизация углеродного сырья, активизирует действие многих ферментов. 4. Высокое содержание нуклеииовы.ч кислот в биомассе, снижение нроизподственных потерь и себестоимости продукта. [c.290]

    Биохимические процессы. Эта группа процессов представляет собой наиболее сложную стохастико-детерминированную систему, осложненную биологической кинетикой, т. е. описанием явлений развития популяций живых клеток. Поэтому математическое оп1Ь еание должно быть дополнено соотношениями, определяющими кинетику их роста. Поскольку в настоящее время отсутствует достоверное описание внутриклеточных явлений, то при моделировании биохимических процессов чаще всего используются обобщенные кинетические модели роста популяции микроорганизмов, формируемые на основе приближенных моделей роста единичной клетки, транспортирования и превращения субстрата в клетке, физио-лого-биохимической или возрастной модели клеток [1, 50]. [c.137]

    Как показали исследования, задолго до возникновения опухоли появляются клетки увеличенных размеров, которые способны к росту, но испытывают трудности при делении. Возможно, что в таких условиях специфические мутаци благоприятствуют развитию ненормальных клеток , способных к быстрому и нерегулируемому делению. Работой [2, с. 80—86] подтверждено, что нельзя объяснять канцерогенное действие смол только присутствием 3,4-бензпирена или других углеводородов. Так, хотя фенолы каменноугольных смол и пеков совершенно не обладают канцерогенным действием, но в их присутствии возрастает канцерогенное действие смолистых веществ, возможно, потому, что фенолы способствуют их прониканию и удерживанию в организме. [c.319]

    В биологии существование термодинамического сопряжения необходимо для обеспечения возможности использования живыми организмами энергии, выделяемой в реакциях клеточного метаболизма. Необратимые химические процессы в клетке являются причиной деградации энергии Гиббса системы в теплоту и приводят к диссипации (рассеянию) энергии. Однако наличие сопряжения таких химических процессов с реакциями ассими-дяции пищевых веществ в клетке частично предотвращает эти потери энергии и тем самым обеспечивает возможность развития или жизнедеятельности клетки и запасания энергии, выделенной в ходе самопроизвольных метаболических реакций, в форме химических связей И клеточных структур живого организма. При этом скорость общего изменения энтропии для сопряжен- [c.302]

    Работы Г. Мозли (1887—1915) показали, что действительной основой периодического закона являются не атомные массы, а положительные заряды ядер атомов, численно равные порядковому номеру элемента в периодической системе. На основании периодического закона и работ Г. Мозли был решен важный вопрос о числе еще неоткрытых элементов. Было установлено, например, что между водородом н гелием или между натрием и магнием новых элементов быть не может. Открытие и дальнейшее развитие периодического закона не только избавило исследователей во многих случаях от бесполезной и трудоемкой работы по поиску новых элементов, но и позволило установить число неоткрытых элементов и их порядковые номера в периодической системе. Однако знание только порядкового номера не давало еще оснований помещать элемент в определенную группу периодической системы. Этот вопрос решался с помощью электронной теории строения атома. Применение этой теории показало, например, что неоткрытый элемент № 72 должен быть аналогом циркония, а не лантаноидов. Элемент № 72 (гафний) действительно был найден в циркониевом минерале в 1923 г., а не в лантаноидах, где его много лет безуспешно искэли, ошибочно считая аналогом лантаноидов. Даже спустя 70 лет после открытия периодического закона в таблице элементов до урана пустовали четыре клетки с номерами 43, 61, 85 и 87. Эти элементы — технеций, прометий, астат и франций — были [c.14]

    За два последних десятилетия получила развитие новая отрасль науки — биоэлектрохимия. Важный раздел биоэлектрохимии связан с изучением мембран, отделяющих внутреннюю часть клетки от среды, которая ее окружает, и играющих большую роль в транспорте питательных веществ. В основе этих процессов лежат электрохимические закономерности. Большую роль играет электронная проводимость мембран в энергетических процессах, протекающих в живых организмах. Электрохимические процессы лежат в основе передачи нервных импульсов, в возникновении биотоков. [c.313]

    Способность растворителя к гомо- и гетероассоциации определяет прочность сольватных оболочек, что, в свою очередь, влияет на скорость выхода радикалов за пределы клетки и направление развития процесса в целом. [c.241]

    Одним из основных принципов, которым руководствавался Д. И. Менделеев при построении периодической системы, было предоставление каждому химическому элементу собственной клетки в таблице. Однако при размещении в периодической системе элементов середин больших приодов он отступил от этого правила и поместил в каждой клетке по три элемента. Основанием для такого объединения было большое сходство авойств элементов, имеющих близкие атомные массы. Возникло три триады — железа, палладия, платины. Расположение в одной клетке периодической системы нескольких элементов, сходных по свойствам, в дальнейшем нашло развитие ученик и последователь Менделеева Богуслав Браунер (долгое время был профессором Пражского университета) разместил все спутники церия (по Менделееву) в одной клетке периодической системы вместе с церием, подчеркнув тем самым близость химических свойств этих элементов [1]. Впоследствии все РЗЭ, следующие за церие.м (и сам церий) стали помещать в одной клетке периодической системы вместе с лантаном (лантаниды) то же относится и к актинидам (см. с. 86—230). [c.110]

    Если считать, что вершиной эволюционного развития усложняющихся структур являются биологические системы, то надо признать существование фактора отбора, сохраняющего именно те системы, которые обладают способностью защищаться от внешних воздействий. Они вступают в контакты с внешней средой тол1>ко так, что приток энергии и массы регулируется строго определенными условиями, которые можно обозначить термином код. В этом отношении динамические системы биологии (т. е. живые клетки и организмы) обнаруживают удивительное сходство-с простейшими физическими системами, на которые наложены ограничения . Следовательно, принцип защиты сохраняет свое значение по крайней мере для некоторого и важного класса систем, представляющих собой исходную точку предбиологического-развития. [c.51]


Смотреть страницы где упоминается термин Клетки развитие: [c.103]    [c.44]    [c.135]    [c.419]    [c.109]    [c.219]    [c.28]    [c.22]    [c.141]    [c.124]    [c.39]    [c.240]    [c.245]    [c.392]    [c.392]   
Иммунология (0) -- [ c.46 , c.213 , c.214 ]




ПОИСК







© 2025 chem21.info Реклама на сайте