Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Материнское или отцовское происхождение хромосом

    Использование хромосомных вариантов для идентификации хромосом при нерасхождении. Гетероморфизм может использоваться для установления происхождения определенной хромосомы, т. е. для выяснения того, получена ли она от отца или от матери и где именно произошло нерасхождение - в первом или втором делении мейоза (рис. 5.7). В случае, изображенном на рис. 5.7, А, три-сомный ребенок имеет три различные 21-е хромосомы вариант рЫ- (а, заштрихован), нормальную ф, черная) и вариант рЬ—(с). Изучение родителей показало, что отец гомозиготен по а, а мать гетерозиготна по Ь и с. Отсюда мы сразу заключаем, что нерасхождение произошло в зародьпие-вом пути матери, так как ребенок несет две материнские и только одну отцовскую хромосомы. Кроме того, нерасхождение, очевидно, произошло в первом делении мейоза, потому что ребенок имеет обе материнские хромосомы. Если бы нерасхождение случилось во втором делении, ребенок получил бы или две хромосомы Ь, или две хромосомы с. Таким образом, нам удалось установить факт нерасхождения в первом мейотическом делении, происшедшем в яичнике матери. [c.151]


    Диплоидные ядра содержат по две копии каждой хромосомы (это не относится лишь к половым хромосомам), одна из которых происходит от мужского родителя, а другая-от женского. Эти две копии называются гомологами. Перед обычным митотическим делением каждый из пары гомологов удваивается, и две образовавшиеся копии остаются соединенными вместе (их называют сестринскими хроматидами). Сестринские хроматиды выстраиваются в экваториальной плоскости веретена таким образом, что их кинетохорные волокна направлены к противоположным полюсам. В результате сестринские хроматиды в анафазе отделяются друг от друга и каждая дочерняя клетка наследует по одной копии каждого гомолога (см. рис. 11-41). Но Гаплоидные гаметы, образовавшиеся при делении диплоидной клетки путем Мейоза, должны содержать лишь по одному гомологу каждой пары. В связи с этим к аппарату клеточного деления здесь предъявляется дополнительное требование гомологи должны иметь юзможность узнавать друг друга и соединяться в пары, перед тем как они выстроятся на экваторе веретена. Такое спаривание, или конъюнгация, гомологичных хромосом материнского и отцовского происхождения происходит только в мейозе. [c.15]

Рис. 16-69. Нормальный митоз (А) и митоз, сопровождающийся рекомбинацией (Б). На схеме указана судьба одиночной пары гомологичных хромосом, одна из которых отцовского происхождения (вьщелена цветом с центромерой в виде черного кружка), а другая материнского (с центромерой в виде белого кружка). Эти хромосомы содержат ген нигментации (либо иной маркерный ген) с аллелем А дикого типа (белый квадрат на отцовской хромосоме) и рецессивным мутантным аллелем а (красный квадрат на материнской хромосоме). Гомозиготная А/А и гетерозиготная А/а клетки обладают нормальным фенотипом, а гомозиготные а/а клетки - измененным фенотипом. Рекомбинация за счет обмена ДНК между отцовской и материнской хромосомами приводит к образованию нары дочерних клеток, одна из которых является гомозиготой А/А (нормальный фенотии), а другая - гомозиготой а/а (мутантный фенотип). Митотическая рекомбинация - редкое случайное событие. Рис. 16-69. <a href="/info/1877716">Нормальный митоз</a> (А) и митоз, сопровождающийся рекомбинацией (Б). На схеме указана судьба одиночной <a href="/info/105443">пары гомологичных</a> хромосом, одна из которых отцовского происхождения (вьщелена цветом с центромерой в <a href="/info/1270178">виде черного</a> кружка), а другая материнского (с центромерой в виде белого кружка). Эти хромосомы содержат ген нигментации (либо иной маркерный ген) с аллелем А <a href="/info/700379">дикого типа</a> (белый квадрат на <a href="/info/1338239">отцовской хромосоме</a>) и рецессивным <a href="/info/1276984">мутантным аллелем</a> а (красный квадрат на <a href="/info/1338239">материнской хромосоме</a>). Гомозиготная А/А и гетерозиготная А/а клетки обладают нормальным фенотипом, а гомозиготные а/а клетки - <a href="/info/1394819">измененным фенотипом</a>. Рекомбинация за счет обмена ДНК между отцовской и <a href="/info/1338239">материнской хромосомами</a> приводит к образованию нары дочерних клеток, одна из которых является гомозиготой А/А (нормальный фенотии), а другая - гомозиготой а/а (<a href="/info/1325146">мутантный фенотип</a>). <a href="/info/32911">Митотическая рекомбинация</a> - <a href="/info/1525552">редкое случайное</a> событие.
    Другую возможность показать, что рак имеет моноклональное происхождение дает феномен инактивации Х-хромосомы (см. разд. 10.3.9). Нормальный женский организм - это случайная смесь или мозаика двух классов клеток тех, в которых инактивирована отцовская Х-хромосома, и тех, в которых инактивирована аналогичная материнская хромосома. Такая инактивация происходит в каждой клетке в раннем эмбриогенезе, поэтому у потомства делящейся соматической клетки всегда инактивирована та же X-хромосома, что и у нее самой. Следовательно, инактивация Х-хромосомы - отцовской или материнской - может служить наследуемым маркером, при помощи которого можно проследить происхождение клеток организма. В подавляющем большинстве исследованных опухолей, доброкачественных и злокачественных, у всех опухолевых клеток была инактивирована одна и та же Х-хромосома, это является сильным аргументом в пользу того, что каждая опухоль - потомство единственной клетки (рис. 21 -5). [c.449]


    У женщин синтез матричной РНК идет только на одной из двух Х-хромосом, присутствующих в клетках. При этом в одних клетках функциональной активностью обладает Х-хромосома материнского происхождения, в других — отцовского. В результате в организме в целом проявляются гены от обоих родителей. [c.42]

    Радиационная индукция геномных и хромосомных мутаций, чувствительность определенных клеточных стадий. Используя Х-сцепленные генетические маркеры мыши, можно различать животных с генотипом ХО и XX и выяснять, какое происхождение имеют Х-хромосомы особей ХО-отцовское или материнское. С помощью этого метода было показано, что частота спонтанного возникновения животных с гено- [c.235]

    Сперматозоид с его 23 хромосомами образуется в результате мейотического деления одной 46-хромосомной клетки семенника. Какие именно 23 хромосомы попадут в каждый данный сперматозоид Очень важно, чтобы, он получил при этом не просто любые 23 из прежних хромосом в нем не должно оказаться два экземпляра, например, тома 13 и ни одного тома 17. Теоретически возможно, чтобы индивидуум наделил один из своих сперматозоидов целиком хромосомами материнского происхождения, т.е. томами 16, 26, 36,..., 236. В случае подобного маловероятного события ребенок, зачатый с участием такого сперматозоида, унаследует половину своих генов от бабки с материнской стороны и не получит ни одного гена от деда со стороны отца. Но на самом деле такого грубого распределения на уровне целых хромосом не происходит. Дело обстоит сложнее. Вспомните, что тома (хромосомы) мы представляем себе в виде скоросшивателей. На самом деле при образовании сперматозоида отдельные листы или скорее пачки листов из одного тома отделяются и обмениваются местами с соответствующими пачками из альтернативного тома. Так, например, у данного сперматозоида том 1 может содержать первые 65 листов из тома 1а и листы с 66-го и до последнего — из тома 16. Такой же смешанный состав могут иметь и остальные 22 тома этого сперматозоида. Поэтому каждый сперматозоид, образуемый данным индивидуумом, отличается от остальных, несмотря на то, что все они собрали свои 23 хромосомы из кусочков одного и того же 46-хромосомного набора. Подобным же образом в яичниках формируются яйцеклетки, каждая из которых чем-то отличается от других. Механика этого смешивания в реальной жизни хорошо изучена. В процессе образования сперматозоида (или яйцеклетки) отдельные участки каждой отцовской хромосомы физически отделяются от других и обмениваются местами с точно соответствующими им участками материнской хромосомы. (Не забывайте, что мы говорим о хромосомах, которые индивидуум, давший сперматозоид, первоначально получил от своих родителей, т.е. от деда и бабки с отцовской стороны ребенка, зачатого при участии этого сперматозоида.) Процесс обмена участками хромосомы называют кроссинговером. Он играет очень важную роль во всем, что составляет содержание настоящей книги. Это означает, что если вы стали бы рассматривать под микроскопом один из собственных сперматозоидов (или яйцеклетку, если вы женщина), было бы пустой тратой времени пытаться идентифицировать хромосомы, первоначально полученные от отца и полученные от матери. (Этим они заметно отличаются от хромосом обычных клеток тела). Каждая отдельная хромосома сперматозоида представляет собой как бы лоскутное одеяло или мозаику из материнских и отцовских генов. [c.28]

    У всех высших растений и животных в процессе полового размножения происходит смена ядерных фаз. При оплодотворении половые клетки (гаметы) и их ядра сливаются, образуя зиготу. Отцовское и материнское ядра вносят при оплодотворении одинаковое число хромосом (п) таким образом, ядро зиготы содержит двойной хромосомный набор (2п). Иными словами, гаметы-гаплоидные клетки (т.е. клетки с одним набором хромосом), а соматические клетки-диплоидные (с двумя наборами). Поэтому при образовании гамет следующего поколения число хромосом в клетке (2и) должно уменьшиться вдвое (2и/2 = и). Совокупность процессов, приводящих к уменьшению числа хромосом, называют мейозом или редукционным делением (рис. 2.3). Мейоз - важнейший процесс у организмов, размножающихся половым путем он приводит к двум результатам 1) к перекомбинированию отцовских и материнских наследственных факторов (генов) и 2) к уменьшению числа хромосом. Мейоз начинается с конъюгации хромосом-каждая хромосома соединяется с соответствующей (гомологичной) хромосомой, происходящей от дфугого родителя. Во время конъюгации путем разрыва и перекрестного воссоединения (кроссинговера) может происходить обмен фрагментами одинаковой длины между гомологичными хромосомами. Затем следует двукратное разделение спаренных расщепившихся хромосом, и в результате образуются четыре клетки, каждая из которых имеет гаплоидное ядро. Таким образом, в процессе мейоза не только происходит перетасовка хромосом материнского и отцовского происхождения, но может произойти и обмен сегментами между гомологичными хромосомами. Оба процесса приводят к новым сочетаниям генов (к их рекомбинации). [c.24]

    Диплоидные ядра содержат по две копии каждой хромосомы (это не относится лишь к половым хромосомам), одна из которых происходит от мужского родителя, а другая - от женского. Эти две копии называются гомологами, и в большинстве клеток они ведут себя как совершенно независимые хромосомы. Когда благодаря репликации ДНК каждая хромосома удваивается, две ее копии остаются сначала соединенными вместе (их называют сестринскими хроматидами). При обычном клеточном делении (описанном в гл. 13) сестринские хроматиды выстраиваются в экваториальной плоскости веретена таким образом, что их кинетохорные волокна направлены к противоположным полюсам. В результате сестринские хроматиды в анафазе отделяются друг от друга (теперь они называются хромосомами), и каждая дочерняя клетка наследует по одной копии каждого гомолога (см. разд. 13.5). Между тем гаплоидные гаметы, образовавшиеся при делении диплоидной клетки путем мейоза, содержат по одной хромосоме каждой гомологичной пары (отцовского или матфинского происхождения), т. е. только половину исходного числа хромосом. В связи с этим к аппарату клеточного деления здесь предъявляется дополнительное требование гомологи должны иметь возможность узнавать друг друга и соединяться в пары, перед тем как они выстроятся на экваторе вфетена. Такое спаривание, или конъюгация, гомологичных хромосом материнского и отцовского происхождения происходит только в мейозе (рис. 15-8) подробности этого процесса будут рассмотрены позже. [c.15]



Смотреть страницы где упоминается термин Материнское или отцовское происхождение хромосом: [c.15]    [c.449]    [c.98]    [c.126]    [c.104]    [c.236]    [c.164]    [c.125]   
Генетика человека Т.3 (1990) -- [ c.117 ]




ПОИСК





Смотрите так же термины и статьи:

Хромосома хромосомы

Хромосомы



© 2025 chem21.info Реклама на сайте