Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Модели регуляции клеточного цикла

    Заключает первую часть модель регуляции клеточного цикла, из результатов которой следуют важные выводы о возможном механизме злокачественного перерождения клетки. [c.5]

    МОДЕЛИ РЕГУЛЯЦИИ КЛЕТОЧНОГО ЦИКЛА [c.139]

    Модель регуляции клеточного цикла [c.143]

    Изучение клеточного цикла (как экспериментальное, так и теоретическое) ведется весьма интенсивно. Интерес к нему (помимо чисто научного) связан в частности с проблемой злокачественного роста. Дело в том, что злокачественные клетки, несмотря на разнообразие форм и свойств, имеют одно общее свойство они не подчиняются тем регуляторным сигналам, которыми управляется поведение нормальных клеток, т. е. злокачественное перерождение проявляется, главным образом, в изменении механизмов регуляции клеточного цикла. Задача математического моделирования клеточного цикла — построение двух моделей (или двух типов моделей) регуляторных процессов соответственно для нормальных и злокачественных клеток. При этом должно быть указано и различие в механизмах регуляции. [c.139]


    У многоклеточных эукариот существуют специальные механизмы регуляции активности больших групп генов на определенных стадиях развития в дифференцированных клетках могут быть полностью выключенными большие группы генов, периодическое выключение большинства генов происходит и в клеточном цикле - на стадии митоза, могут быть постоянно выключены гены одной из хромосом генома. Интересной моделью для изуче- [c.57]

    Модель, основанная на процессах в генетическом аппарате, была построена Цаневым и Сендовым [П52] и привела к ряду интересных результатов, в частности к описанию эффекта блокировки (см. гл. 2). Однако применение ее к описанию регуляции клеточного цикла оказалось затруднительным. [c.142]

    Интересно, что модель сходного типа была предложена и для объяснения регуляции клеточного цикла у более примитивных организмов. Однако у некоторых из них, например у S hizosa haromy es ротЬе (дрожжи), амебы (простейшие) и Physarum (миксомицеты), фаза Gi вообще отсутствует, и после митоза клетки прямо вступают в фазу S. У этих клеток точка рестрикции, по-видимому, контролирующая клеточное деление, находится в начале фазы М. [c.173]

Рис. 15-29. Модель, демонстрирующая, каким образом вслед за воздействием прогестерона фактор инициации М-фазы (ФИМ) может индуцировать переход яйца лягушки из профазы 1 в метафазу По предложенной гипотезе, прогестерон косвенно вызывает образование соответствующего фермента, который активирует небольшие количества ФИМ. Это приводит к активации не только больших количеств ФИМ (многократно усиленный отклик), но и протеинкиназ, фосфорилирующих ядерные мембраны и хромосомные белки. В результате целостность ядерной оболочки нарушается, хромосомы конденсируются и, таким образом, клетка вступает в метафазу. Последующая инактивация ФИМ приводит к тому, что воссоздается ядерная оболочка, хромосомы деконденсирукггся и, таким образом, клетка может вступить во второе деление мейоза (на рисунке не показано). Возможно, аналогичный механизм лежит в основе процесса созревания ооцитов маекопитающих. Один из компонентов ФИМ идентифицирован это протеинкиназа. Она гомологична протеинкиназе дрожжей, кодируемой геном с4с2/28 и играющей ключевую роль в регуляции клеточного цикла дрожжевых клеток. Рис. 15-29. Модель, демонстрирующая, каким образом вслед за воздействием прогестерона <a href="/info/100015">фактор инициации</a> М-фазы (ФИМ) может <a href="/info/102270">индуцировать переход</a> <a href="/info/1413491">яйца лягушки</a> из профазы 1 в метафазу По предложенной гипотезе, прогестерон косвенно вызывает образование <a href="/info/1321604">соответствующего фермента</a>, который активирует <a href="/info/748834">небольшие количества</a> ФИМ. Это приводит к активации не только <a href="/info/472531">больших количеств</a> ФИМ (многократно усиленный отклик), но и протеинкиназ, фосфорилирующих <a href="/info/152940">ядерные мембраны</a> и <a href="/info/1382290">хромосомные белки</a>. В результате целостность <a href="/info/106062">ядерной оболочки</a> нарушается, хромосомы конденсируются и, <a href="/info/461013">таким образом</a>, клетка вступает в метафазу. Последующая инактивация ФИМ приводит к тому, что воссоздается <a href="/info/106062">ядерная оболочка</a>, хромосомы деконденсирукггся и, <a href="/info/461013">таким образом</a>, клетка может вступить во <a href="/info/1355105">второе деление мейоза</a> (на рисунке не показано). Возможно, <a href="/info/169329">аналогичный механизм</a> лежит в <a href="/info/25608">основе процесса</a> созревания ооцитов маекопитающих. Один из компонентов ФИМ идентифицирован это протеинкиназа. Она гомологична протеинкиназе дрожжей, кодируемой геном с4с2/28 и играющей ключевую роль в <a href="/info/1047145">регуляции клеточного цикла</a> дрожжевых клеток.

    Сформулируем теперь важную для моделирования гипотезу регуляторные аппараты дтоль сложного процесса, как клеточная деятельность, должны быть достаточно просты, автономны и обособлены от регулируемого процесса. Эта гипотеза равно относится к клеточным часам, к регуляции деления и вообще к управлению поведением сложной системы. Гипотеза не тривиальна, поскольку можно сформулировать альтернативу автономного регулятора нет и в управлении циклом равно участвуют все клеточные процессы (а их порядка нескольких тысяч ). Гипотеза важна для нас, поскольку только она позволяет построить модель регуляции. [c.142]


Смотреть страницы где упоминается термин Модели регуляции клеточного цикла: [c.286]    [c.102]    [c.34]    [c.298]    [c.51]    [c.148]    [c.50]    [c.136]   
Смотреть главы в:

Математическая биофизика -> Модели регуляции клеточного цикла




ПОИСК





Смотрите так же термины и статьи:

Регуляция

Регуляция клеточного цикла

Регуляция цикла



© 2025 chem21.info Реклама на сайте