Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Высокомолекулярные соединения общие свойства

    Растворы высокомолекулярных соединений, несмотря на общность некоторых свойств с истинно коллоидными лиофобными растворами, имеют свои специфические особенности. Эти отличия связаны тремя общими термодинамическими признаками, характеризующими любой истинный раствор I) самопроизвольностью образования растворов ВМС 2) высокой степенью их устойчивости  [c.328]

    Среди высокомолекулярных соединений важное место занимают белки. Они играют основную роль во всех жизненных процессах, а продукты их переработки — в технике и производстве. Белки являются полимерными электролитами, так как их молекулы содержат ионогенные группы. Поэтому растворы белков имеют целый ряд особенностей по сравнению с растворами других полимеров. В состав молекул белков входят разнообразные а-аминокислоты, в общем виде формула их строения может быть записана в форме КНг — К — СООН. В водном растворе макромолекула представляет амфотерный ион КНз — К — СОО . Если числа диссоциированных амино- и карбоксильных групп одинаковы, то молекула белка в целом электронейтральна. Такое состояние бедка называют изоэлектрическим состоянием, а соответствующее ему значение pH раствора — изоэлектрической точкой (ИЭТ). Чаще всего белки — более сильные кислоты, чем основания, и для них ИЭТ лежит при pH < 7. При различных pH изменяется форма макромолекул в растворе. В ИЭТ макромолекулы свернуты в клубок вследствие взаимного притяжения разноименных зарядов. Б кислой и щелочной средах в макромолекуле преобладают заряды только одного знака, и вследствие их взаимного отталкивания молекулы распрямляются и существуют в растворе в виде длинных гибких цепочек. Поэтому практически все свойства растворов белков проходят через экстремальные значения в изоэлектрическом состоянии осмотическое давление и вязкость минимальны в ИЭТ и сильно возрастают в кислой и щелочной средах вследствие возрастания асимметрии молекул, минимальна также способность вещества к набуханию, оптическая плотность раствора в ИЭТ максимальна. Изучение всех этих свойств используется для определения изоэлектрической точки белков. [c.443]


    По своему происхождению все волокна могут быть подразделены на природные и химические. Химические в свою очередь делятся на искусственные, изготовляемые из высокомолекулярных соединений, находящихся в природе в готовом виде (целлюлоза, казеин и др.), и синтетические волокна, получаемые из высокополимеров, предварительно синтезируемых из мономеров. Применение химических волокон растет с каждым годом. Этому способствует высокая экономическая эффективность их получения и применения, полная независимость производства от климатических и почвенных условий, практическая неисчерпаемость сырьевых ресурсов и возможность выпуска волокон с новыми, невиданными ранее свойствами. Так, затраты в человеко-днях на производство 1 т волокна составляют для шерсти (мытой) 400, для хлопка 238, а для вискозного штапеля всего 50. Если свойства природных волокон изменяются в узких пределах, то химические волокна могут обладать комплексом заранее заданных свойств в зависимости от их будущего назначения. Из химических волокон вырабатываются товары широкого потребления ткани, трикотаж, меховые изделия, одежда, обувь, обивка, спортинвентарь, драпировки, щетки, бортовая ткань, галантерея, заменители кожи, а также технические изделия корд, фильтровальные ткани, обивка для машин, рыболовные снасти, не гниющие в воде, канаты, парусина, парашюты, аэростаты, скафандры, искусственная щетина, электроизоляция, приводные ремни, брезенты высокой прочности, пожарные рукава, шланги, транспортерные ленты, хирургические нити, различная спецодежда и т. п. Химические волокна используются для герметизации и уплотнения аппаратов, работающих в агрессивных условиях. В производстве различных типов химических волокон как из природных полимеров, так и из смол имеется много общего, хотя каждый метод одновременно обладает своими характер- [c.207]

    Однако коллоидная химия изучает и другие высокодисперсные системы — растворы высокомолекулярных соединений белков, целлюлозы, каучука, которые на заре развития коллоидной химии получили название лиофильных (гидрофильных) золей и были причислены к типичным коллоидам, так как обладают общими свойствами, характерными для коллоидных систем. К этим свойствам относятся  [c.326]

    В первой части книги показано значение высокомолекулярных соединений, рассмотрены их самые общие свойства и изложены основные положения химии соединений этого класса. В этом же разделе даны основные понятия, номенклатура и классификация высокомолекулярных соединений, а также приведен краткий очерк истории развития химии высокомолекулярных соединений. [c.6]


    Химический состав, строение и свойства высокомолекулярных соединений нефти характеризуются рядом общих особенностей, отличающих их от других групп природных и синтетических высокомолекулярных веществ. Ниже приводятся некоторые из основных особенностей высокомолекулярных соединений нефти. [c.12]

    Полученное высокомолекулярное соединение обладало следующими общими с гемоглобином и миоглобином свойствами а) хорошей растворимостью в воде, необходимой для достижения высокой концентрации О2 б) способностью благодаря наличию функциональных групп мешать необратимому окислению кислородного комплекса в) служить моделью дистального имидазола. [c.368]

    Исходя из современных представлений о химической технологии как точной, а не описательной науке, и ее месте в системе подготовки специалиста-химика, а также из необходимости улучшения химической и, особенно, инженерной подготовки учителя средней школы, в пособии усилено внимание к изложению общих принципов и теоретических основ химической технологии, которые используются в последующем при описании конкретных технологических процессов. В то же время, учитывая адресность пособия (химик - учитель химии, а не химик -инженер-технолог), в тексте книги опущены излишняя математизация при изложении теоретических основ технологических процессов и подробное описание химической аппаратуры. Так как в учебных планах педвузов отсутствует курс Процессы и аппараты химической технологии , в пособии дается краткое освещение основных процессов, их классификация и описание типовой химической аппаратуры. По этой же причине, вследствие отсутствия в учебных планах педвузов отдельного курса химии высокомолекулярных соединений, в пособии рассматриваются такие общие вопросы как свойства полимерных материалов, особенности строения полимеров, основы реологии и принципы переработки полимерных материалов в изделия. [c.4]

    Современный период характеризуется более глубоким изучением высокомолекулярных соединений, в частности пространственного строения природных и синтетических макромолекул, связи между физико-химическими свойствами и структурой полимеров. Высокомолекулярные соединения важны прежде всего в связи с их применением в качестве синтетических материалов в технике и первостепенным значением в живой природе. Четко разделять эти две области при рассмотрении нецелесообразно. Наше изложение будет построено следующим образом сначала познакомимся с общими свойствами и способами получения высокомолекулярных соединений, затем рассмотрим природный каучук как прообраз современных синтетических материалов, далее познакомимся с общими проблемами современной промышленности синтетических материалов и в заключение с отдельными представителями этих материалов (синтетическими каучуками, пластмассами, искусственными волокнами). [c.316]

    Выделенные в процессе деасфальтизации концентраты асфальтенов и смол (табл. 1.10)являются агломератами наиболее высокомолекулярных соединений, составляющих основу для формирования ядер сложных структурных единиц в исходных остатках. Изучение их состава и свойств позволяет получить необходимые данные для построения общей модели основной структурной единицы нефтяных остатков различных нефтей с целью использования в последующем анализе результатов их превращений на поверхности полидисперсных катализаторов. [c.35]

    Наибольшее значение среди химических добавок имеют различного рода природные и синтетические высокомолекулярные соединения (полимеры), молекулы которых построены многократным повторением тех или иных определенных структурных единиц. Будучи по свойствам и строению весьма разнообразными, полимеры имеют и ряд общих свойств. [c.31]

    С. Химия высокомолекулярных соединений общие вопросы структура, свойства природных и синтетических ВМС общие вопросы химии природных и синтетических ВМС синтез ВМС (карбоцепных, гетероцепных, элементоорганических, неорганических). [c.73]

    В твердых полимерах с линейной структурой каждая молекула может входить отдельными своими звеньями в состав кристаллитов, т. е. участков, в которых соседние цепи расположены правильно, параллельно друг другу, тогда как другие ее звенья могут входить в участки аморфной структуры, где отсутствует правильное расположение цепей (рис. 88). Долю объема кристаллитов в общем объеме полимера называют степенью кристалличности полимера. Полимеры с линейной структурой и невысокой степенью кристалличности (аморфные) могут находиться в зависимости от температуры в трех агрегатных состояниях стеклообразном, высокоэластическом и вязкотекучем (рис. 89). Каждое из этих состояний характеризуется определенными механическими свойствами. В стеклообразном состоянии силы притяжения между молекулами велики все молекулы поэтому занимают и сохраняют определенные положения, а полимер обладает механической прочностью, подобно твердому телу. С понижением температуры возрастает хрупкость. При нагревании полимер переходит в высокоэластическое состояние, существующее только у высокомолекулярных соединений. Важнейшее свойство полимера в этом состоянии — высокая эластичность — способность сильно растягиваться под действием не- [c.257]


    Подобно тому как в органической химии наряду с общими законами химии выявляются и важные специфические закономерности, свойственные органическим соединениям (например, соотношения в свойствах различных членов одного гомологического ряда), в химии высокомолекулярных соединений наряду с оби ими [c.559]

    ОБЩИЕ СВОЙСТВА И МЕТОДЫ ИССЛЕДОВАНИЯ ВЫСОКОМОЛЕКУЛЯРНЫХ СОЕДИНЕНИЙ НЕФТИ [c.11]

    П. П. Веймарн и В. Оствальд предложили рассматривать свойства дисперсных систем только с позиции их степени дисперсности, не учитывая гетерогенности. Более общие представления о свойствах коллоидных растворов были развиты Н. П. Песковым, который подразделял коллоиды на два класса к первым он отнес коллоиды, которые самопроизвольно диспергируют в растворителе, образуя коллоидные растворы. Если вызвать коагуляцию такой системы, то в коагуляте окажется много растворителя. После удаления электролита (коагулята) коагулянт, как правило, сохраняет способность вновь диспергировать в растворителе. Второй класс коллоидов, по Н. П. Пескову, — это системы, у которых коагуляция необратима, коагулят (осадок), как правило, не содержит дисперсной среды. При этом только вторая группа коллоидных растворов представляет собой типичные коллоиды, инертные по отношению к дисперсионной среде. Как это ни парадоксально, но вещества, получившие впервые в истории науки название коллоиды (гуммиарабик, белки, крахмал), оказались не настоящими коллоидами. Водные растворы этих веществ в отличие от типичных коллоидов представляют собой гомогенные термодинамически равновесные системы, устойчивые и обратимые, т. е. представляют собой истинные растворы макромолекул высокомолекулярных соединений (ВМС). Различие двух типов коллоидов связано в значительной мере с гибкостью и асимметричным строением макромолекул. Последние взаимодействуют с растворителем (дисперсионной средой) подобно низкомолеку- [c.382]

    Молекулой называется наименьшая нейтральная частица данного вещества, облада-юш,ая его химическими свойствами и способная к самостоятельному существованию. Различают одноатомные, двух-, трех- и т. д., в общем многоатомные молекулы. В обычных условиях из одноатомных молекул состоят благородные газы молекулы высокомолекулярных соединений, напротив, содержат многие тысячи атомов. [c.101]

    Изучением полимеров, методами их синтеза, их свойствами занимается большой и чрезвычайно важный раздел химии — химия высокомолекулярных соединений. Мы ограничимся лишь кратким описанием некоторых свойств линейных и поперечно-сшитых полимеров, наиболее существенных для общего химического образования и биологических приложений химии. [c.142]

    Следовательно, общим во всех рассмотренных свойствах растворов выступает зависимость их только от числа растворенных частиц в единице объема раствора. Это позволяет определить на их основе молекулярные массы, что и сейчас имеет значение для растворов высокомолекулярных соединений. Следует, однако, не забывать, что приведенные закономерности справедливы для разбавленных растворов неэлектролитов. [c.219]

    В конце предыдущей главы мы познакомились с клетчаткой и крахмалом как важными представителями природных высокомолекулярных соединений. Такие вещества, как клетчатка, крахмал, каучук, белки и ряд других веществ, которые мы теперь относим к высокомолекулярным соединениям, издавна были важными объектами изучения органической химии. Несмотря на различия в составе, эти вещества обладают некоторыми общими свойствами. Эта общность проявляется, в частности, в неспособности переходить в жидкое и тем более в газообразное состояние без разложения. Большинство из этих веществ нерастворимы, и лишь некоторые могут образовывать коллоидные растворы. Подобные свойства объясняются тем, что в отличие от большинства других органических соединений клетчатка (целлюлоза), крахмал, каучук, белки являются высокомолекулярными веществами, молекулы которых состоят из тысяч и десятков тысяч атомов. [c.315]

    ОБЩИЕ СВОЙСТВА И МЕТОДЫ ПОЛУЧЕНИЯ ВЫСОКОМОЛЕКУЛЯРНЫХ СОЕДИНЕНИЙ [c.316]

    В отдельной главе описаны высокомолекулярные соединения с сопряженной системой связей — высокомолекулярные непредельные, гетероциклические и координационные полимеры с системой сопряжения. Несмотря на то что они относятся к различным классам соединений, их объединяют некоторые закономерности в синтезе и общие свойства— высокая термостойкость, парамагнетизм, полупроводниковые и другие ценные свойства. [c.9]

    Второе издание (1-е изд. 1974 г.) курса коллоидной химии переработано п соотнетствии с новейшими достижениями науки о коллоидах. Изложены общие закономерности физикохимии дисперсных систем и поверхностных явлений, учение о поверхностных силах и адсорбции, устойчипости дисперсных систем, физическая химия высокомолекулярных соединений, мицеллообразование, свойства порошков, суспензий, эмульсий, поверхностных пленок и аэрозолей. [c.2]

    В третьем издании (2-е изд.— 1984 г.) изложены общие закономерности фнзикохнмни дисперсных систем и поверхностных явлений, учение о поверхностных силах и адсорбции, устойчивости дисперсных систем, физическая химия высокомолекулярных соединений, мицеллообразование, свойства порошков, суспензий, эмульсий, поверхностных пленок и аэрозолей. [c.2]

    Несмотря на ряд существенных различий в поведении холестерических лиотропных п термотропных низкомолекл лярных высокомолекулярных соединений, общие принципы формирования и основные оптические свойства холестерической мезоф азьг, присущие одновременно как низкомолекулярным, так и полимерным холестерикам, будут рассмотрены ниже применительно к спиральному упорядочению стерл необразных молекул [c.340]

    Пленки, обладающие высокими электроизоляционными свойствами, могут быть получены только на основе высокомолекулярных соединений. Общим принципом построения високомолекулярных соединений является наличие в нх молекуле многократно повторяющегося звена, что является следствием особого способа получения молекул. Такие соединения называются полимерами. [c.9]

    Полисахариды. Эти углеводы во многом отличаются от моно- и дисахаридов — не имеют сладкого вкуса, в большинстве нерастворимы в воде, они представляют собой сложные высокомолекулярные соединения, которые под каталитическим влиянием кислот или ферментов подвергаются гидролизу с образованием более простых полисахаридов, затем дисахаридов и, в конечном итоге, множества (сотен и тысяч) молекул моносахаридов. Важнейшие представители полисахаридов — крахмал и целлюлоза (клетчатка). Их молекулы построены из звеньев -СбНюОб-, являющихся остатками шестичленных циклических форм молекул глюкозы, потерявших молекулу воды поэтому состав и крахмала, и целлюлозы выражается общей формулой (СеНюОа) . Различие же в свойствах этих полисахаридов обусловлено пространственной изомерией образующих их моно-сахаридных молекул крахмал построен из звеньев а-, а целлюлоза — /3-формы глюкозы. [c.582]

    НИЯ, весьма сложен. В связи с этим существует разрьш между нашими представлениями о свойствах тяжелых углеводородных модельных веществ и тем, что мы знаем о свойствах тяжелых углеводородов нефти в общем наши знания об углеводородах молекулярного веса от 300—1000 довольно ограничены. Каждый, кто применяет для анализа высокомолекулярных продуктов методы, основанные на свойствах синтетических углеводородов, должен быть знаком с этим фактом. Для восполнения пробела необходима большая работа, так как недостаток данных по индивидуальным компонентам становится серьезной помехой при изучении высококипящих нефтяных фракций. Если метод структурно-группового анализа применяется для изучения структурных элементов, которые не могут быть точро определены в нефтяных фракциях, например степень разветвления, то единственно возможным путем является изучение синтетических углеводородов. В этих случаях требуется большое число данных не только о самих чистых веществах, но также и об их смесях. Несмотря на то, что число данных все время увеличивается, как правило, не имеется достаточного экспериментального материала по высокомолекулярным соединениям. [c.369]

    Для высокомолекулярных соединений характерны некоторые общие свойства. Они, как правило, трудно растворимы, причем растворимость падает по мере увеличения молекулярной массы. Обычно растворение идет очень медлс-нно, н ему часто предшествует набухание, в ходе которого молекулы растворителя проникают в массу растворяемого полимера. Полученные растворы, даже при невысоких концентрациях, обладают большой вязкостью, во много раз превосходящей вязкость концентрированных растворов низкомолекулярных соединений. Есть высокомолекулярные соединения, которые вообще не растворяются. [c.187]

    Прошедшее с тех пор время внесло, конечно, весьма существенные изменения в общую картину состояния проблемы. Сильно увеличилось число исследований в области высокомолекулярных соединений нефти и расширилась их география. Значительно расширился набор экспериментальных методов разделения этих веществ на основные компоненты и анализа их элементного состава и химического строения. Унифицированы и стандартизованы методики, аппаратура и материалы, применяемые при исследовании высокомолекулярных компонентов нефти, что делает результаты более надежными, воспроизводимыми и сопоставимыми. Накоплен большой экспериментальный аналитический материал по свойствам и элементному составу неуглеводородных -Компонентов и высокомолекулярных углеводородов нефти, что позволяет сделать некоторые обобщения по элементному составу этих составляющих компонентов нефти. К сожалению, имеются серьезные расхождения по содержанию в неуглеводородных компонентах нефти такого важного элемента, как кислород, который обычно определяют по разности. Противоречия имеются и в данных по содержанию металлов (вероятно, из-за недостаточной унификации методов их определения). По-прежнему объектами исследования чаще всего служат высокомолекулярные соединения тяжелых нефтяных остатков, т. е. продукты, подвергавшиеся длительному высокотемпературному воздействию в процессах переработки и, следовательно, претерпевшие более или менее глубокие химические изменения. Особенно сильным изменениям подвергается неуглеводородная, т. е. смолисто-асфальтеновая, часть. Соединения же эти в неизменном состоянии, выделяемые из сырых нефтей и природных асфальтов в условиях, исключающих их химические изменения, изучены значительно слабее. Экспериментальных данных, позволяющих надежно и с достаточной полнотой оценить характер химических превращений высокомолекулярных компонентов нефтей в процессах высокотем- [c.44]

    Гидрирование смолы, выделенной из ромашкинской нефти, проводилось в автоклаве в присутствии катализатора WSj— —NiS—AI2O3. Смола была выделена из смеси высокомолекулярных соединений ромашкинской нефти по методике, описанной в [23], и характеризовалась следующими свойствами мол. вес 929, содержание гетероатомов более 7% ( 4% серы, 2% кислорода и 1,0% азота), отношение С/Н равно 8,9. Растворенная в бензоле и, и циклогексане смола (2—5-кратное количество растворителя) подвергалась гидрированию при рабочем давлении 300 атм, температуре 300° С, в течение 40—80 час. Здесь также наблюдались реакции обессеривания исходных фракций и насыщение их водородом без снижения молекулярных весов, что указывает на то, что основная часть атомов серы находится в исходных сераорганических соединениях не в виде мостиков, а входит в состав гетероциклов. Каталитическому гидрированию с целью установления особенностей их химического строения подвергались природные нефтяные смолы [17]. Гидрогенизат отделялся от ка-тализата, от него отгонялся растворитель (в токе азота на водяной бане), после чего гидрогенизат доводился до постоянного веса в вакууме. После общей характеристики гидрогенизат разделялся на силикагеле АСК на углеводороды и смолы по методике, описанной в [23]. [c.123]

    Для успешного развития этой новой и весьма обширной области науки и техники потребовалось создать целый арсенал методов научного исследования и новые технологические процессы, с учетом состава, строения и свойств высоконолимерных материалов. В разработке этих методов исследования исключительная роль принадлежит физике, физической химии и коллоидной химии. Высокомолекулярные соединения, содержащиеся в природных нефтях, весьма существенно отличаются ио строению и свойствам от таких классических представителей высокомолекулярных природных и синтетических соединений, как белок, целлюлоза, каучук, эбонит и др., но все же они имеют и много общего с последними. Поэтому многие методы исследования, разработанные в химии высокомолекулярных соединений за последние 25—30 лет, вполне применимы для исследования высокомолекулярных соединений, содержащихся в нефти. Высокомолекулярные соединения, составляющие наиболее тяжелую часть нефти, по размерам молекул относятся к начальной, самой низшей ступени обширной области высокомолекулярных природных и синтетических органических веществ. [c.11]

    В-третьих, данные о зависимости свойств и реакционной способности высокомолекулярных углеводородов гибридного строения от строения молекулы, полученные на основе исследования синтетических углеводородов бинарных и многокомпонентных смесей, приготовленных из них, служат реперными точками при исследовании фракций высокомолекулярных углеводородов нефти. Эти объективные предпосылки, включая и появление более совершенной экспериментальной техники, появившиеся за последние несколько лет, позволяют более уверенно и оптимистически смотреть на ближайшие перспективы развития исследований высокомолекулярных соединений нефти. В этой связи заслуживают большого внимания недавно опубликованные [ИЗ] результаты исследования 70-градусной фракции высокомолекулярных углеводородов гюргянской нефти. Основная часть парафино-циклопарафиновых углеводородов этой фракции (более-60%, из которых 85% не образуют кристаллического комплекса с карбамидом) не дегидрируется в молекуле их, отвечающей общей формуле С24Н48, содержится 2 пятичленных кольца, остальную часть молекулы (56%) составляют парафиновые С-атомы. [c.247]

    Несмотря на то, что применение смолисто-асфальтеновых веществ (САВ) известно более ста лет, настоящий этап характеризуется значительными и возрастающими успехами [147, 148]. Ранее было известно, что они могут быть использованы для производства битумов, разновидностей нефтяного углерода, природных депрессаторов, для изоляции трубопроводов. Все эти области не учитывали специфических особенностей, разнообразных и ценных свойств САВ. В 1936 г. Черножуковым и Крейном была показана стабилизирующая роль САВ в окислении минеральных масел. Более поздними работами была выявлена стабилизирующая способность асфальтенов в процессах термо- и фотодеструкции, окисления углеводородов и синтетических полимеров [149—150]. Ингибирующими центрами САВ являются гетероатомы и функциональные группы, имеющие подвижный атом водорода (гидроксипроизвод-ные ароматических фрагментов, аминные и серусодержащие компоненты). Ингибирующая способность высокомолекулярных соединений нефти повышается с ростом их общей ароматичности, концентрации гетероатомов и функциональных групп. В зависимости от этих факторов константа скорости ингибирования может изменяться в широких пределах от ж 10 до 10 л/(моль-с). Ингибирующая активность асфальтенов на 1—2 порядка выше, чем смол. [c.347]

    Меркаптаны (тнолы). Имеют строение Р5Н. Метилмеркап-тан (метантиол) —газ с т. кип. 5,9°С. Этилмеркаптан и более высокомолекулярные гомологи — жидкости, нерастворимые в воде. Температура кипения меркаптанов Со—Се 35—140°С. Меркаптаны обладают очень неприятным запахом. У низших представителей этот запах настолько интенсивен, что обнаруживается в ничтожных концентрациях (0,6-Ю-" -Ь 2-10 % для СгНбВН). Это свойство их используется в практике газоснабжения городов для предупреждения о неисправности газовой линии. Они добавляются к бытовому газу в качестве одоранта . Содержание меркаптанов в нефтях невелико. Так, в башкирских и татарских нефтях оно колеблется от 0,1 до 15,1% от общего содержания сернистых соединений. Исключением является марковская нефть (Восточная Сибирь). Почти все сернистые соединения (общее содержание серы 0,897о) представлены меркаптанами и концентрируются в бензиновой фракции. [c.36]

    Необходимо особо отметить, что растворы высокомолекулярных соединений, несмотря на общность некоторых свойств с истинноколлоидными лиофобными растворами, имеют свои специфические особенности. Эти отличия связаны тремя общими термодинамическими признаками, характеризующими любой истин-ный раствор 1) самопроизвольностью образования растворов ВМС 2) высокой степенью их устойчивости 3) обратимостью происходящих в них процессов. [c.175]

    Общий теоретический курс Высокомолекулярные соединения , который преподается на химических факультетах и на некоторых отделениях биологических факультетов университетов страны, знакомит студентов с основами науки о полимерах и дает представление О ее важнейших практических приложениях. Знания эти необходимы каждому современному химику независимо от его узкой специализации. В общем курсе рассматриваются наиболее существенные аспекты химии, физико-химии и физики полимеров в их единстве, привносимом макромолекулярностью и цепным строением. Предлагаемое учебное пособие — руководство к практическим занятиям по общему курсу, естественно, исходит из тех же принципов преподавания этой дисциплины, сформулированных в свое время основателем первой в нашей стране университетской кафедры высокомолекулярных соединений академиком В. А. Каргиным. Главная задача общего практикума — закрепить у студента полученные им в общем курсе представления о химических и физических особенностях полимерного вещества, а также привить ему навыки работы в области синтеза, химической модификации изучения физико-химических, механических свойств и структуры полимеров различных классов. [c.5]

    Общий подход к рассмотрению свойств высокомолекулярных соединений оказывается возможным потому, что многие их особенности зависят больше от формы макромолекул, чем от их химической природы. Так, характерные особенгюсти линейных полимеров — способность образовывать прочные волокна и пленки, значительная эластичность, способность растворяться, а при повышении температуры плавиться. Типичные представители линейных полимеров — это каучук и его сиитетические аналоги, 1юлиамиды, полиолефины. [c.316]


Смотреть страницы где упоминается термин Высокомолекулярные соединения общие свойства: [c.34]    [c.30]    [c.33]    [c.434]    [c.452]    [c.459]    [c.13]    [c.14]    [c.294]   
Основы химии высокомолекулярных соединений (1976) -- [ c.41 ]

Химия высокомолекулярных соединений Издание 2 (1966) -- [ c.44 ]




ПОИСК





Смотрите так же термины и статьи:

Высокомолекулярные соединени

Высокомолекулярные соединения

Общие понятия о строении и свойствах высокомолекулярных соединений

Общие свойства высокомолекулярных соединений--------- дд Молекулярный вес полимеров

Общие свойства синтетических каучуков как высокомолекулярных соединений

Растворы высокомолекулярных соединений Общие свойства высокомолекулярных соединений



© 2025 chem21.info Реклама на сайте