Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коагуляция частиц двух различных размеров

    В дисперсных системах, как уже говорилось ранее, обычно присутствуют частицы разных размеров, число которых описывается кривой распределения. Эти частицы различаются значениями избыточной поверхностной энергии и, следовательно, имеют различные растворимости или давления паров. В результате в полидисперсных системах происходит перераспределение частиц по размерам в сторону их укрупнения, причем термодинамическим пределом этого перераспределения является разделение дисперсной системы на две фазы (два слоя). Частицы дисперсной фазы могут укрупняться двумя путями. Первый — коалесценция (слияние) или коагуляция (слипание) частиц второй — молекулярный перенос вещества дисперсной фазы от мелких частиц к крупным. Возможно и одновременное действие этих двух механизмов. [c.84]


    Осадки. В тракте питающей воды имеются два основных источника образования осадков. Одним из них является то, что питающая вода до поступления в систему была недостаточно очищена. Как правило, для удаления больщей части примесей, обусловливающих жесткость воды, а также для изменения ее щелочного баланса используется стандартный процесс коагуляции при помощи содо-известкового умягчения. Кроме того, из системы удаляются также взвешенные частицы, например частицы глины, вызывающие мутность этой воды. Наряду с алюминиевыми квасцами, солями железа или алюминатом натрия часто применяются такие дополнительные коагулянты, как высокомолекулярные полимерные материалы. Во многих случаях, однако, вода выдерживается в отстойниках недостаточное время, а используемые фильтры работают не всегда удовлетворительно. В результате мелкие частицы осадков в виде взвеси попадают в тракт питающей воды, где они агрегируются с образованием частиц больших размеров и осаждаются в коммуникациях. Частицы, которые не осаждаются в тракте питающей воды, попадают в котел и также служат причиной различных осложнений. [c.30]

    В предыдущблМ разделе был рассмотрен механизм образования капель и пузырей в процессе диспергирования жидкости или газа. Однако частицы дисперсной фазы в процессе своего движения по высоте аппарата подвергаются различным воздействиям, которые приводят к изменению средних размеров частиц. В аппарате непрерывно происходят два противоположных процесса дробление дисперсной фазы и коагуляция частиц. Суммарный эффект этих процессов наряду с начальным процессом образования дисперсии определяет средний размер частиц и их распределение по размерам. Внешним выражением наличия противоположных процессов дробления и коагуляции является экстремальный характер зависимости размеров диспергированных частпц от нагрузкп по дисперсной фазе и бимодальный характер распределения частиц по размерам, о котором говорилось в предыдуш ем параграфе. [c.287]

    Из приведенных выше формул видно, что легче всего поляризуются частицы электропроводного вещества (металла в частности) в диэлектрической непроводящей среде и, следовательно, суспензии металлов должны иметь наибольшую склонность к самопроизвольной поляризации, т. е. к появлению у них сегнетоэлектриче-ских свойств. Как уже отмечалось в комментарии к формуле (3.9.29), для этого должно выполняться условие иа > 3. Так как концентрация частиц п есть величина порядка ф / а , то в суспензиях металлов, согласно формуле (3.9.37), указанное условие спонтанной поляризации сводится к неравенству ф > 1/е. Тогда суспензия металла должна превратиться в сегнетоэлектрик при объемной доле металлических частиц во взвеси Ф > 1/е. Однако это предсказание теории не оправдывается. Более того, даже предельно концентрированные суспензии металлов в твердой среде (например парафин, канифоль и др.) ведут себя как обычные диэлектрики с умеренной величиной диэлектрической проницаемости. Разумеется, что при этом должен быть исключен гальванический контакт между частицами, поскольку при этом суспензия станет электропроводной. Следует отметить, что получить суспензию с высокой электропроводностью не менее трудно, чем обеспечить ее полное отсутствие. Для этого нужно совместить наличие хороших контактов между соседними частицами с их высокой концентрацией и равномерным распределением в диэлектрической среде. На самом деле эти требования являются взаимоисключающими, так как наличие контактов означает коагуляцию частиц (их комкование), что не позволяет достичь высокой концентрации и равномерности распределения в среде. Возможно, что сегнетоэлектрическое состояние металлических суспензий не реализуется именно потому, что не удается полностью исключить их электрическую проводимость. Ведь наличие сегнетоэлектрических свойств предполагает, что выделившиеся на некоторых поверхностях заряды не стекают за счет проводимости суспензии. В связи с этим следует обратить внимание на два обстоятельства. Первое связано с тем, что сегнетоэлектрики, как и ферромагнетики, должны иметь доменную структуру, т. е. состоять из областей микроскопических размеров, в пределах которых суспензия поляризована (намагничена) однородно. Поляризация соседних областей при этом различна по направлению. В ферромагнетиках по обе стороны междоменной границы могут сосуществовать как одноименные, так и разноименные магнитные заряды — полюса доменов. Очевидно, что в электрических аналогах ферромагне- [c.652]



Смотреть главы в:

Очистка газов -> Коагуляция частиц двух различных размеров




ПОИСК





Смотрите так же термины и статьи:

Коагуляция

Коагуляция размера частиц

Частицы размер

Частицы размер см Размер частиц



© 2025 chem21.info Реклама на сайте