Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коагуляция размера частиц

    Как указано в гл. III, для очистки радиоактивно-за-грязненных вод применяются осадительные процессы, связанные большей частью с образованием коллоидных осадков и их последующей коагуляцией (размеры частиц в коллоидных растворах 0,001—0,1 мкм, размеры частиц коллоидных осадков значительно больше). Осадительные процессы широко применяются в водоочистительной технике для коагулирования содержащихся в воде коллоидных частиц в целях их укрупнения до таких размеров, при которых они задерживаются отстойниками и фильтрами. [c.108]


    Для разделения систем Ж1 — Ж2 отстаиванием используются ловушки и сепараторы. Скорость подъема частиц легкой жидкости зависит от размера частиц, плотности и вязкости среды. Для частиц нефти диаметром 80—100 мкм скорость всплывания составляет 1—4 мм/с при степени удаления нефти из воды 96—98 % [5.55, 5.24]. Скорость движения воды 5—10 мм/с. Процесс извлечения частиц легкой жидкости ускоряется за счёт флотации и коагуляции. При разделении системы Ж1—Ж2 образуется жидкость Ж с растворенной в ней жидкостью Ж2 и жидкость более тяжелая Жг с растворенной и диспергированной в ней жидкости Жь Разделение жидкостей в соответствии с санитарными нормами не обеспечивается. [c.472]

    Размер частиц, применяемых в кипящем слое, обычно примерно на порядок ниже, чем в неподвижном слое, он почти не влияет на гидравлическое сопротивление потоку применение слишком мелких частиц ограничивается, однако, опасностью уноса катализатора из слоя. Обычно используют частицы сферической формы, как наиболее устойчивые к истиранию. Регулировку размера частиц производят в ходе получения гранул при коагуляции (см. раздел .2) или скоростью распыления при получении гранул на распылительной сушилке. Сферическая форма гранул, очевидно, определяется самой технологией получения катализатора. [c.199]

    Скорость дрейфа субмикронных частиц практически не зависит от их размера и имеет порядок нескольких см/с, с увеличением размера на порядок (10 мкм) заряд частиц становится пропорциональным квадрату радиуса. Поэтому целесообразна двухступенчатая схема предварительная акустическая коагуляция субмикронных частиц и окончательная электрическая очистка. Такой подход был развит в работах Таганрогского радиотехнического института (Тимошенко В. И. и др.). [c.135]

    С учетом изложенного выше движущая сила коагуляции (агрегации) частиц размером ц, и г—ц при наличии сил отталкивания [c.85]

    Рассмотрим кинетику агрегации (коагуляции) крупных частиц с линейными размерами более 5-10 см. Пусть крупная частица объема (г— х) обладает сечением захвата 5о( х, г— х), представляющим площадь, перпендикулярную оси движения большой частицы, характеризующуюся тем, что, если центр частицы размера 1 прошел через эту площадь, то она слипается с большей частицей. Причем сечение захвата не равно площади л(ац+а, так как столкновение в несущей фазе не похоже на чисто геометрическое столкновение биллиардных шаров. Вследствие гидродинамического взаимодействия частиц даже при почти центральном их сближении, когда столкновение казалось бы неизбежным, частицы могут обойти друг друга не коснувшись. [c.95]


    Н. П. Песков ввел (1922) понятия о кинетической и об агрегативной устойчивости коллоидных систем, соответственно устойчивости в отношении процессов седиментации и в отнощении изменения размеров частиц (главным образом коагуляции). [c.509]

    Из приведенных уравнений следует, что скорость осаждения возрастает с увеличением размера частиц, разности плотностей частиц и среды и с уменьшением вязкости среды. Поэтому в технике воздействуют на неоднородную систему с целью коагуляции (укрупнения) частиц уменьшают вязкость среды, повышая температуру жидкости, или применяют маловязкие растворители. [c.323]

    В проведенных исследованиях все исходные пыли подчинялись логарифмически-нормальному закону распределения частиц по размерам. Распределение по размерам частиц электризованных в камере аэрозолей тоже описывается этим законом, что говорит о небольшой степени коагуляции. Как показывает анализ данных табл. IV.6 [c.190]

    Уменьшение содержания бензола в системе, равно как и увеличение, приводило к снижению эмульгирующих свойств асфальтенов. Если в первом случае (при уменьшении бензола) это связано с процессом укрупнения размеров частиц асфальтенов в растворе, (их коагуляции), переходом из коллоидного состояния в область грубо дисперсных суспензий и выпадением из раствора, то во втором случае (при увеличе-  [c.7]

    По мере развития процесса коагуляции латекса размеры частиц возрастают, поэтому рассеяние света будет меньше, чем это следует из уравнения (VI. П). Однако оптическая плотность латекса в начальный период коагуляции линейно зависит от времени процесса т. Дифференцируя по времени уравнение (VI. 11), получаем  [c.167]

    Первые исследователи свойств эмульсии считали, что поверхностное натяжение ст является очень важным фактором, определяющим стабильность и размер частиц. Приводились доводы, что большая величина а означает и большую энергию, затрачиваемую на образование новой поверхности и, следовательно, это неблагоприятствует образованию эмульсии. Поэтому стремились к уменьшению а тем или иным путем. Как установлено в настоящее время, работа, затрачиваемая на образование новой поверхности, представляет собой лишь часть общей энергии, потребляемой в процессе приготовления эмульсии. Несомненно, низкое значение поверхностного натяжения способствует диспергированию, но более важны те изменения, которые происходят в двойных электрических слоях , образующихся возле этих поверхностей. Двойной электрический слой обеспечивает устойчивость эмульсии, препятствуя коагуляции частиц, и показывает, будут ли образовываться эмульсии типа вода в масле (В/М) либо масло в воде (М/В). Изменение поверхностного натяжения — проявление тех изменений, которые происходят в природе самой поверхности. [c.19]

    На рис. 54 приведены схемы возможного сочетания ввода газов и твердой фазы. Рассмотрим приведенные схемы, учитывая, что в реальных условиях происходят изменения материала в процессе технологической обработки. В одних случаях это приводит к изменению размера частиц — разбуханию, коагуляции, растрескиванию, окомкованию, в других (плавильные печи) —к изменению агрегатного состояния вследствие образования жидких фаз —металла и шлака. Изменение размеров [c.183]

    Термодинамически неустойчивые системы могут быть до некоторых размеров частиц дисперсной фазы кинетически устойчивы. Потеря кинетической устойчивости приводит практически к разрушению коллоидной системы и превращению ее в качественно другую систему, например, грубую дисперсию. Возможно регулировать агрегативную и кинетическую устойчивость системы, воздействуя на процесс коагуляции частиц дисперсной фазы, например созданием на их поверхности защитных слоев путем введения различных добавок. Устойчивость коллоидных систем может изменятся также за счет формирования вокруг дисперсных частиц сольватных слоев из молекул растворителя. [c.24]

    В работе [49] исследована возможность определения методом светорассеяния активного состояния нефтяной дисперсной системы по изменению радиуса частиц дисперсной фазы в мазуте смеси западно-сибирских нефтей в присутствии модификатора — экстракта селективной очистки масел. Исследовались 2% мае. растворы исходного сырья в гептан-толуольном растворителе. Средние размеры частиц дисперсной фазы рассчитывали по значениям оптической плотности исследуемых растворов [48]. Рассчитанные на базе экспериментальных данных радиусы частиц в испытуемых растворах составляли 60-150 нм. Во избежание расслоения растворов мазута в гептане и выделения асфальтенов в отдельную фазу проводили предварительную обработку ультразвуком подготовленных к испытаниям образцов. Подобное дополнительное диспергирование повышало устойчивость системы к расслоению, временно предотвращало коагуляцию частиц дисперсной фазы. Следует отметить, что проведенная обработка при подготовке образцов к испытаниям естественно оказывает влияние на результаты измерения и истинные размеры структурных образований в исходном мазуте. В этой связи предложенные авторами рекомендации по методу определения среднего радиуса частиц дисперсной фазы для оценки активного состояния рассматриваемой нефтяной системы требуют специального обсуждения. [c.83]


    Гидрофобные коллоиды, частицы которых по своим размерам намного больше обычных молекул, очень неустойчивы. Поэтому максимально достижимая концентрация частиц в таких коллоидах сравнительно невелика. Например, в золях золота значение с не может быть выше чем 10 частиц в 1 см раствора, что при комнатной температуре кТ эрг), согласно уравнению (3.6), соответствует Р = 40 дин/см , или 4-10 атм. Столь малое осмотическое давление нельзя измерить ни непосредственно в осмотической ячейке, ни косвенно эбулиоскопическим или криоскопиче-ским методом. Последние два метода в данном случае неприменимы еще и потому, что кипячение или замораживание неустойчивых коллоидов приводит к их коагуляции. Таким образом, размер частиц гидрофобных коллоидов невозможно определить путем измерения осмотического давления. Зато этот метод широко применяется для определения молекулярной массы высокомолекулярных соединений (т. е. лиофильных систем), что обусловлено меньшим размером их молекул и большей устойчивостью их растворов по сравнению с гидрофобными коллоидами. Устойчивость раство- [c.43]

    Процесс отстаивания твердых частиц зависит от многих факторов от размера частиц, вязкости и pH раствора, температуры, скорости коагуляции коллоидных частиц и т. д. [c.424]

    Формулы (VI.76) и (VI.77) можно применять не только по прямому назначению, но и для оценки скорости коагуляции в двухкомпонентных системах, понимая под а , а. , Мд и Пд размеры частиц и концентрации каждого компонента. [c.160]

    Различают периоды скрытой коагуляции и коагуляции явной. Вначале происходит укрупнение частиц, невидимое невооруженным глазом (скрытая коагуляция), затем размер частиц достигает предела видимости, после чего скрытая коагуляция переходит в явную. Коагулирующая сила электролита существенно зависит от величины заряда ионов, несущих заряд одноименный с противоионами. Чем больше их заряд, тем при меньшей их концентрации начинается коагуляция. Различие их во влиянии на коагуляцию чрезвычайно велико. Для однозарядных ионов порог коагуляции в зависимости от природы золя, степени его дисперсности и концентрации составляет 25—100 ммоль/л, для двухзарядных ионов 0,5—2,0 ммоль/л и для трехзарядных 0,01—0,1 ммоль/л. Эта закономерность получила название правила Шульце—Гарди. Порог коагуляции не зависит от природы ионов, вызывающих коагуляцию, за исключением случаев, когда эти ионы специфически адсорбируются на поверхности коллоидной частицы. Величина заряда ионов, несущих заряд, одноименный с зарядом ядра, на пороге коагуляции практически не оказывается. Отметим также, что анионы оказывают большее коагулирующее действие, чем катионы. [c.419]

    Увеличение размера частиц может идти как за счет коагуляции, т. е. слипания частиц, так и за счет изотермической перегонки, или эффекта Кельвина. Этот эффект заключается в том, что вещество из мелких частиц переносится в крупные, у которых химический потенциал меньше. Постепенно мелкие частицы исчезают, а крупные увеличиваются. Коагуляция и изотермическая перегонка вызывают нарушение седиментационной устойчивости и разделение фаз (образование хлопьев, выпадение осадков, расслоение). В концентрированных системах коагуляция может привести к образованию пространственных структур и не сопровождаться разделением фаз. [c.430]

    Односторонность подхода Оствальда к характеристике коллоидов показал Н. П. Песков (1918). По Пескову, взгляд на коллоиды, как на системы, свойства которых являются функцией только размера частиц, недостаточен для полного описания коллоидных систем. Это может быть сделано лишь с учетом факторов, определяющих способность коллоидной системы сохранять неизменными размеры частиц. Изменение размеров частиц происходит при их слипании — коагуляции. Способность противостоять коагуляции была названа агрегативной устойчивостью. [c.6]

    Хардинг [273] изучил ряд факторов, влияющих на процесс гете рокоагуляции образцов коллоидного кремнезема с коллоидным оксидом алюминия. Относительное число частиц, требуемое для оптимального протекания коагуляции, зависит от их относительных размеров. Высокая концентрация в системе нейтрального электролита затормаживает взаимную коагуляцию. Хогг и др. [274] рассмотрели влияние, оказываемое на коагуляцию размером частиц. О подобном эффекте сообщалось Чернобереж-ским, Голиковой и Гирфановой [275], которые наблюдали, что в смеси золей ЗЮг п РеоОз при pH 3 коагуляция не происходила, когда концентрация КС1 превышала 10 моль/л. Такая система также изучалась Мади и др. [276]. [c.521]

    Режимы движения фаз в колонных аппаратах чрезвычайно многообразны. Знание закономерностей поведения фаз в каждом режиме и пределов изменения гидродинамических параметров, в которых существует тот или иной режим, соверщенно необходимо при правильном определении условий проведб йя химических и тепло-массообменных процессов. Многообразие режимов движения фаз в аппаратах колонного типа обусловлено многими факторами в частности, многообразием участвующих в движении сред (твердые, жидкие и газообразные), многообразием величин и направлений скоростей фаз, различными условиями ввода и вывода фаз, возможностью возникновения различного рода неустойчивостей в двухфазном потоке, возможностью протекания процессов дробления и коагуляции частиц, а также влиянием поверхностно-активных веществ и различных примесей на поведение капель и пузырей. Однако при всем многообразии различного вида течений, встречающихся в колонных аппаратах, можно вьщелить определенный класс дисперсных потоков, которые имеют ограниченное число установившихся режимов, а поведение фаз в этих режимах определяется общими для всех систем закономерностями. Такие потоки можно назвать идеальными. Они существуют при скоростях движения фаз, сравнимых со скоростью их относительного движения. При этом частицы распределены достаточно равномерно по сечению аппарата если и существуют градиенты концентрации дисперсной фазы, то они имеют конечную величину. Это означает, что концентрация частиц в среднем меняется от точки к точке непрерывным образом. Форма частиц близка к сферической, а их размер не слишком отличается от среднего размера частиц в потоке. [c.86]

    Коалесценция частиц, происходящая в аппаратах колонного типа, носит наименование ортокинетической коагуляции. Этот процесс является следствием различия размеров частиц и их скоростей в полидиснерсной системе. Однако в распылительных и барботажных колоннах при высокой объемной доле дисперсной фазы, когда вероятность столкновения частиц должна быть особенно велика, имеет место особая структура двухфазного потока, при которой частицы различного объема образуют единую группу — конгломерат частиц. Эта группа движется, как единое целое [27] со скоростью, которая не зависит от размеров отдельных частиц. [c.247]

    В предыдущблМ разделе был рассмотрен механизм образования капель и пузырей в процессе диспергирования жидкости или газа. Однако частицы дисперсной фазы в процессе своего движения по высоте аппарата подвергаются различным воздействиям, которые приводят к изменению средних размеров частиц. В аппарате непрерывно происходят два противоположных процесса дробление дисперсной фазы и коагуляция частиц. Суммарный эффект этих процессов наряду с начальным процессом образования дисперсии определяет средний размер частиц и их распределение по размерам. Внешним выражением наличия противоположных процессов дробления и коагуляции является экстремальный характер зависимости размеров диспергированных частпц от нагрузкп по дисперсной фазе и бимодальный характер распределения частиц по размерам, о котором говорилось в предыдуш ем параграфе. [c.287]

    Еще в прошлом веке Кундтом было обнаружено воздействие интенсивных акустических волн на тонкие порошки в газах, а Кениг дал трактовку наблюдаемому явлению [30]. Знаменитая трубка Кундта является наглядной иллюстрацией этого воздействия. В 1931 г. Паттерсон и Кейвуд [7] отметили увеличение размеров частиц аэрозоля и их оседание в местах пучностей колебаний под действием ультразвуковых волн с частотой 34 кГц. Дальнейшие исследования в Англии, Германии и Советском Союзе были направлены на выяснение природы явления и разработку специальной аппаратуры. Возник ряд гипотез о механизме акустической коагуляции. [c.133]

    Лиофобные золи. Мы уже видели, что обязательными условиями устойчивости лиофобных золей являются очень зшшя размер частиц, наличие у них электричргких зарядов, одинаковых по знаку, и сольватация частиц. Первое предохраняет их от осе-даНИЯ, "второе и третье — от укрупнения в результате слипания, (коагуляции). Своим происхождением заряды коллоидных частиц обязаны адсорбционным процессам заряд появляется у частицы вследствие того, что частица данного коллоида пре имущее ственно (или избирательно) адсорбирует из раствора ионы того или иного вида в зависимости от природы коллоидного веш ества и от условий опыта. Чтобы выяснить ближе характер зтой адсорбции, обратимся прежде всего к результатам экспериментального изу- J чения структуры коллоидных растворов. [c.515]

    Высокомолекулярные соединения (продукты уплотнения и смолисто-асфальтеновые соединения), изначально содержащиеся в топливах, при их коагуляции образуют нерастворимую фазу. Для предотвращения этого нежелательного процесса используют диспергирующие присадки (дисперсанты). Методом электронной микроскопии было показано, что ионол проявляет свойства диспергирующей присадки, при концентрации 0.1% масс, уменьшаются размеры частиц от 0.8 мкм до 3-15 нм и увеличивается число частиц от 10 до 10 в 1 мм [101]. Введение ионола (0.2% масс.) в дизельную [c.183]

    Хотя с повышением температуры нагрева выше 150° С количество осад, ков, образующихся в топливах, уменьшается, размер частиц осадков уведи, чнвается (табл. 2. 24). Осадки в определенной зоне температур выпада1ох из топлив вследствие изменения состояния и коагуляции продуктов окисле, ния гетероорганических соединений топлив, первоначально находящихся в топливе в виде коллоидного раствора [6, 2]. При удалении гетероорганиче. ских соединений из топлива (например, путем адсорбционной очистки) его [c.111]

    Различие в размерах частиц дисперсной фазы отражается на молекулярно-кинетических свойствах дисперсных систем. Частицы суспензий не участвуют в броуновском движении, они не способны к диффузии и как следствие в отличие от лиозолей суспензии седиментационио неустойчивы и в них практически отсутствует осмотическое давление. Молекулярно-кинетическое движение частиц лиозолей обусловливает энтропийное отталкивание частиц, обеспечивает равномерное их распределение по объему дисперсионной среды. Энтропийный фактор агрегативной устойчивости у суспензий отсутствует, скорость их коагуляции не зависит от броуновского движения (и не может следовать закономерностям теории кинетики коагуляции Смолуховского), а связана в основном со свойствами прослоек дисперсионной среды. Действия других факторов агрегативной устойчивости в суспензиях и лиозолях имеют много общего. [c.343]

    Установлено, что стабилизации микрогетерогеиных эмульсий способствует самопроизвольное образование ультрамикрогетерогенных эмульсий (микроэмульсий) вокруг частиц. Микроэмульсии (размер частиц 10—100 нм) образуются вследствие турбулентности в приповерхностных слоях частиц основной эмульсии. Слон капелек микроэмульснй выступают в роли структурно-механического барьера, замедляющего коагуляцию основной эмульсии. [c.348]

    В процессе коагуляции высокодисперсного золя гидроксида железа образуются сравнительно небольшие по размерам седиментационно ус1011чивые агрегаты. Поэтому исследование коагуляции частиц Ре(ОН)з удобнее всего проводить с помощью турбидиметрического метода (см. работу 17). Применимость этого метода основывается на сильной зависимости интенсивности светорассеяния от размеров частиц. При коагуляции частиц она повышается, соответственно увеличивается оптически я плотность золя. Поскольку при прохождении светового потока через окрашенные золи часть света рассеивается, а часть поглощается, то при изучении коагуляции в таких системах методом турбидиметрии необходимо исключить поглощение света. Для золя Ре(ОН)з этого можно достичь, проводя измерения при красном светофильтре, т. е. при длине волны падающего света = 620—625 нм. [c.164]

    При всем многообразии форм и размеров частиц загустителя, образующихся при охлаждении, смеси компонентов, общим для них является способ формирования структурного каркаса. В процессе охлаждения коллоидного (мыльные смазки) или истинного (углеводородные смазки) раствора происходит кристаллизация загустителя с одновременным ростом и связыванием кристаллов (bo iokoh) друг с другом и образованием кристаллической сетки. В обычных коллоидных системах (с малым содержанием твердой фазы) частицы дисперсной фазы при столкновениях коагулируют и выпадают в осадок. Высокая концентрация дисперсной фазы в смазках препятствует коагуляции частиц, они формируют пространственный структурный каркас. Чем выше анизометричность (соотношение их длины и ширины) частиц загустителя, тем более прочную структуру они образуют. [c.356]

    Шоу и Вервеем при исследовании монодисперсных и иолистироль-ных латексов установлено (частное сообщение), что константа скорости для наиболее быстрой коагуляции значительно изменяется при изменении концентрации частиц (уменьшается при увеличении концентрации) и размера частиц (уменьшается при увеличении радиуса). Значения Ко, найденные для указанных латексов, колеблются от и ниже, являясь, таким образом, меньшими, чем теоретическое значение 5-10 . Причина этого отклонения не совсем ясна, однако можно предполагать, что экспериментальные значения будут приближаться к теоретическим при экстраполировании к бесконечному разбавлению. [c.107]

    Другая трудность в применении теории Смолуховского к обычным эмульсиям — влияние ортокинетической коагуляции. Она проявляется в том, что в высокополидисперсных системах, подвергающихся коагуляции, мелкие частицы исчезают значительно быстрее, чем крупные — эффект Вернера (1932). Ортокинетическая коагуляция заключается в увеличении скорости столкновения частиц сверх скоростей, обусловленных броуновским движением, возникающим из-за различных скоростей движения больших и малых частиц в гравитационном поле или при конвекции. Этот эффект ясно демонстрируется, например, в дисперсиях угольной сажи, к которым добавляют определенное количество соли, чтобы вызвать медленную коагуляцию. В некоторых случаях золи, медленно коагулирующие при стоянии, мгновенно коагулируют при интенсивном встряхивании. Такой эффект является авто каталитическим, так как при росте агрегатов неравенство скоростей увеличивается. В типичных эмульсиях с размером капель 0,1 —10 мкм и более ортокинетическая коагуляция может быть более важной, чем обычная коагуляция. Поэтому ни теория Смолуховского, ни любое ее усовершенствование не применимы к процессам быстрой и медленной коагуляции. [c.107]

    Изменение дисперсности (размеров частиц) в результате коагуляции можно обнаружить но изменению оптических свойств системы, в частности по изменению интенсивности светорассеяния (опалесценции). С увеличением размеров частиц увеличивается интенсивность рассеянного света когда размеры частиц становят-120 [c.120]

    Энергия молекулярного и электростатического взаимодействий частиц одинакового размера, как следует из уравнений (VI.34) — (VI.35), прямо пропорциональна радиусу частиц. Поэтому увеличе1ше размера частиц влечет за собой увеличение потенциального барьера н глубины вторичного минимума. Основываясь на этом следствии из теории ДЛФО, можно заключить, что высокодисперсные системы (а 0,1 мкм) более склонны к ближней коагуляции (с преодолением потенциального барьера), а грубодисперсные (суспензии, эмульсии)—к дальней (во вторичном минимуме). [c.153]

    Несмотря на бесспорную связь между размером частиц и свойствами дисперсной системы, неверно все особенности дисперсной системы объяснять только дисперсностью, как это делал, например, немецкий ученый Во. Оствальд. Исходя из допущения о примате размера частиц над всеми остальными свойствами. Во. Оствальд даже предложил называть науку о коллоидных системах не коллоидной химией, а дисперсоидологией, т. е. учением о дисперсном состояние материи. Советскими учеными, и в первую очередь Н. П. Песковым, было указано, что такой взгляд является односторонним и представляет собою чисто механистический подход. Дисперсоидологйя, сводившая все только к уменьшению или увеличению размера частиц, совершенно не учитывала сложного, в большинстве случаев сопровождающегося адсорбцией, Взаимодействия частиц дисперсной фазы с дисперсионной средой, а также возможность чисто химических взаимодействий при коагуляции. А между тем эти явления играют весьма важную роль в коллоидных системах. Кроме того, дисперсоидология, рассматривая все дисперсные системы как качественно тождественные и отличающиеся только размером частиц, не может объяснить особые свойства, которыми обладают коллоидные системы и которые отличают их как от молекулярно-дисперсных, так и грубодисперсных систем. [c.23]

    Коагуляционные структуры. К ним относятся структуры, обычно возникающие в результате понижения агрегативной устойчивост дисперсных систем. При истинной коагуляции, когда частицы полностью теряют фактор устойчивости (двойн электрический слой сольватную оболочку и т. д.), они слипаются друг с другом, образуя компактные агрегаты. Достигнув определенного размера, эти агрегаты образуют плотный коагулят (или коагулюм). Если же происходит неполная астабилизация системы, то фактор устойчивости будет снят только с некоторых участков поверхности частиц, Да и то не полностью, и в результате этого частицы, слипаясь по таким местам, образуют пространственную сетку, в петлях которой находится дисперсионная среда. Происходит, как принято говорить, гелеобразование или образование лиогеля. Вид струк- [c.315]

    Следующим этапом в развитии коллоидной химии является период изучения размера частиц коллоидных систем (В. Освальд в Германии и П. П. Веймарн в России). Наиболее важное значение имело выяснение зависимости свойств веществ от дисперсности. В период изучения дисперсных систем развилось учение об адсорбции (М. С. Цвет, 1903 В. А. Шишковский. 1908 И. Лепгмюр, 1917 Г. Фрейндлих, 1926 Н. А. Шилов, 1930). В это же время были за.южены теория двойного электрического слоя (Г. Гуи, Д. Чепмен, О. Штерн, 1910-1924) и теория коагуляции (М. С. Смо-луховский, 1918). Учение о поверхпост 1ых явлениях постепенно становится основой коллоидной химии, ее теоретическим фундам ентом. [c.8]

    Выделение систем с определенным размером частиц в особый класс коллоидных систем не является чисто формальным. Высокая дисперсность придает веществам новые качественные признаки повышенную реакционную способность и растворимость, интенсивность окраски, светорассеяние и т. п. Резкое изменение свойств вещества с повышением дисперсности связано с быстрым увеличением суммарной поверхности раздела между частицами и средой. Большая поверхность раздела создает в коллоидных системах большой запас поверхностной энергии Гиббса, который делает коллоидные системы термодинамически неустойчивыми, чрезвычайно реакционноспособными. В этих системах легко протекают самопроизвольные процессы, приводящие к снижению запаса поверхностной энергии адсорбция, коагуляция (слипание дисперсных частиц), образование макроструктур и т. п. Таким образом, самые важные и неотъемлемые черты всякой дисперсной системы — гегетрогенность и [c.365]


Смотреть страницы где упоминается термин Коагуляция размера частиц: [c.76]    [c.86]    [c.191]    [c.332]    [c.116]    [c.207]    [c.54]    [c.296]    [c.50]   
Аэрозоли-пыли, дымы и туманы (1972) -- [ c.151 ]

Химия кремнезема Ч.1 (1982) -- [ c.522 , c.525 ]

Аэрозоли-пыли, дымы и туманы (1964) -- [ c.151 ]

Аэрозоли - пыли, дымы и туманы Изд.2 (1972) -- [ c.151 ]




ПОИСК





Смотрите так же термины и статьи:

Коагуляция

Коагуляция частиц двух различных размеров

Частицы размер

Частицы размер см Размер частиц



© 2025 chem21.info Реклама на сайте