Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия частиц при коагуляции

    Лиофобные дисперсные системы (золи, суспензии, эмульсии) агрегативно неустойчивы, поскольку у ннх имеется избыток поверхностной энергии Гиббса. Процесс укрупнения частиц (коагуляция) протекает самопроизвольно, так как он ведет к уменьшению удельной поверхности и снижению поверхностной энергии Гиббса. [c.430]

    Лиофобные дисперсные системы являются термодинамически неравновесными. В отличие от молекулярных растворов - гомогенных систем они обладают большим запасом свободной поверхностной энергии, самопроизвольное уменьшение которой происходит вследствие уменьшения поверхности раздела фаз. Таким образом, процесс слипания частиц - коагуляция является термодинамически выгодным и самопроизвольным. [c.44]


    Энергия частиц достаточна для преодоления барьера отталкивания, а глубина первичного минимума достаточна для того, чтобы удержать частицы вместе. Происходит коагуляция за счет ближнего взаимодействия. [c.33]

    Эффективность отрицательного расклинивающего давления как фактора, способствующего сближению частиц, зависит от толщины поверхностного слоя 6, в котором совершается переход от объемных свойств к поверхностным. Если 1 мало и велико, то потенциальная энергия отрицательного расклинивающего давления будет представлена потенциальной ямой с практически вертикальными стенками. В этом случае свободная поверхностная энергия способствует коагуляции только как термодинамический фактор, необратимо смещающий равновесие в сторону коагуляции. Таким образом, учитывалось притяжение частиц, например, в теории быстрой коагуляции Смолуховского. [c.9]

    Выше мы видели, что термодинамическая неустойчивость дисперсных и коллоидных систем выражается в самопроизвольном укрупнении частиц — коагуляции и коалесценции. Однако скорость коагуляции может быть различной. Если система обладает большим избытком свободной энергии на границе раздела фаз, т. е. и поверхностное. натяжение а и площадь S поверхности раздела фаз достаточно велики, то коагуляция идет с большой скоростью. Такие системы называют агрегативно неустойчивыми. Но иногда в колЛоиде с такой же степенью дисперсности коагуляция идет очень медленно, практически незаметно. В таких системах, называемых агрегативно устойчивыми, очевидно, поверхностное натяжение на границе фаз невелико. Отсюда можно сделать вывод о том, что важный фактор получения устойчивых коллоидных систем — уменьшение поверхностной энергии за счет адсорбции поверхностноактивных веществ на коллоидных частицах. [c.55]

    П. А. Ребиндер [34] показал, что как фактор стабилизации расклинивающее давление имеет значение лишь для лиофобных коллоидов с высокими потенциалами поверхности или разбавленных золей и эмульсий, но теряет его у большинства реальных систем. Кинетическая энергия частиц, соударяющихся с большой скоростью, может превзойти энергетический барьер между ними, после чего иод действием доминирующих сил сцепления наступает коагуляция. [c.82]

    Выше мы видели, что термодинамическая неустойчивость дисперсных и коллоидных систем выражается в самопроизвольном укрупнении частиц — коагуляции или коалесценции. Однако скорость коагуляции может быть различной. Если система обладает большим избытком свободной энергии на границе раздела фаз, т. е. и поверхностное натяжение о и площадь 5 поверхности раздела фаз достаточно велики, то коагуляция идет с большой скоростью. Такие системы называют агрегативно неустойчивыми. Но иногда в коллоиде с такой же степенью дисперсности коагуляция идет очень медленно, практически незаметно. В таких системах, называемых агрегативно устойчивыми, очевидно, поверхностное натяжение на границе фаз невелико. Отсюда можно [c.54]


    Количественное описание взаимодействия дисперсных частиц принципиально возможно па основе современного учения о поверхностных силах и сводится к определению потенциальной энергии частиц или, иначе, к установлению баланса действующих между ними сил. Эта задача на основе общей концепции расклинивающего давления тонких жидких слоев была сформулирована в 1937 г. Б. В. Дерягиным. Им был разработан метод расчета свободной энергии и сил, действующих между двумя заряженными поверхностями в растворах сильного электролита, и показано, что при определенных условиях возможно появление на кривой потенциальной энергии взаимодействия второй энергетической ямы на относительно далеком расстоянии от поверхности [1]. При учете молекулярных сил притяжения Ван-дер-Ваальса— Лондона и ионно-электростатических сил отталкивания установлены общие закономерности взаимодействия в низкоконцентрированных растворах электролитов двух пластин и с некоторыми ограничениями двух одинаковых шаров, и на этой основе разработана теория устойчивости и коагуляции коллоидов [1—6]. Последняя была распространена на взаимодействие трех плоских частиц [c.130]

    Поскольку удельная поверхностная энергия частиц а равна нескольким десяткам эргов на квадратный сантиметр, согласно расчетам, отрыв частиц произойдет при г менее 100 А. Таким образом, можно полагать, что в реальной дисперсной системе центробежные силы отрыва не внесут изменений в теоретическое значение константы скорости коагуляции. [c.147]

    Поскольку R кал/град-моль, то = 2,26 10 /g = 2,86-10 и [/3 = 3,22-10 кал/моль. Таким образом, энергий взаимодействия (коагуляции) частиц лежит в пределах 2— [c.79]

    Первый случай соответствует броуновскому движению частицы В вблизи частицы А. Взаимное положение частиц Л и В в этом случае определяет некоторый энергетический минимум, соответствующий их сильному взаимодействию. Однако чтобы достичь этого положения, частица В должна преодолеть энергетический барьер (высотой пвх) тах ывают энергией активации коагуляции при, эта величина определяет скорость коагуляции. При О процесс коа- [c.242]

    Все 3. делятся на две большие группы — лиофобные и лиофильные 3. Лиофобные 3., в частности гидрофобные (напр., гидрозоли металлов платины, золота, серебра, сульфидов), являются термодинамически неравновесными, агрегативно неустойчивыми дисперсными системами, способными к агрегации диспергированных частиц — коагуляции. Такие 3. поэтому ие могут быть получены в концентрированном виде и коагулируют при введении малых добавок электролитов, при повышении темп-ры и т. д. В отличие от них, в лиофильных 3. (3. мыл, красителей), дисперсная фаза к-рых обладает на границе с дисперсионной средой весьма малой удельной поверхностной энергией, частицы сильно сольватированы средой. Такие 3. агрегативно устойчивы и термодинамически равновесны. К лиофильным 3. примыкают самопроизвольно образующиеся, а потому предельно высокодисперсные, эмульсии, включая и критич. эмульсии и туманы, возникающие вблизи критич. темп-ры смешения двух жидких фаз или жидкости и пара. Раньше лиофильными 3. считали также растворы высокомолекулярных соединений. [c.55]

    В аналитической практике осаждение обычно производят в растворах, содержащих значительные количества электролитов. В связи с этим золи образуются сравнительно редко и почти всегда не очень устойчивы. Для их коагуляции обычно используют аммонийные соли, если в качестве противоионов нужны катионы, и уксусную кислоту, когда необходимы противоионы — анионы. Последующее кипячение раствора повышает кинетическую энергию частиц, облегчает возможность их сближения, слипания и оседания. [c.206]

    Скорость газов в этих аппаратах достигает 3,3—5,4 м/с. При скоростях ниже 3,3 м/с кинетическая энергия частиц, по-видимому, слишком мала, чтобы способствовать коагуляции, а при более высоких скоростях улавливание частиц тумана осложняется. Сопротивление в этом аппарате достигает 750 Па. На установках, выпускающих 98°/о-ную кислоту, выхлопной газ, пропущенный через такой отделитель, неизменно содержал 17 мг/м тумана серной кислоты. Туман олеумных установок пока не удалось улавливать никакими механическими коагуляторами. [c.234]

    Выделение систем с определенным размером частиц в особый класс коллоидных систем не является чисто формальным. Высокая дисперсность придает веществам новые качественные признаки повышенную реакционную способность и растворимость, интенсивность окраски, светорассеяние и т. п. Резкое изменение свойств вещества с повышением дисперсности связано с быстрым увеличением суммарной поверхности раздела между частицами и средой. Большая поверхность раздела создает в коллоидных системах большой запас поверхностной энергии Гиббса, который делает коллоидные системы термодинамически неустойчивыми, чрезвычайно реакционноспособными. В этих системах легко протекают самопроизвольные процессы, приводящие к снижению запаса поверхностной энергии адсорбция, коагуляция (слипание дисперсных частиц), образование макроструктур и т. п. Таким образом, самые важные и неотъемлемые черты всякой дисперсной системы — гегетрогенность и [c.365]


    Сказанное выше относится и к объяснению данных, полученных при коагуляции дисперсии алмаза в растворе ВаСЬ, когда с ростом pH происходит значительное изменение устойчивости системы, несмотря на то, что электростатическая составляющая энергии парного взаимодействия должна изменяться незначительно. По всей вероятности, такой разный характер зависимости устойчивости и электрокинетического потенциала от pH связан не только с присутствием ГС, но и с тем, что их структура и протяженность меняются с изменением pH и концентрации электролита. Последнее предположение подтверждается, в частности, при изучении агрегативной устойчивости дисперсии алмаза при рН = 9. При концентрациях ВаСЬ 5-10 и 1-10 2 моль/л степень агрегации т=1,8. Вклад ионно-электростатической составляющей при этих концентрациях крайне мал, частицы агрегируют в первичной яме ограниченной глубины. Наблюдаемый рост степени агрегации до /и = 2,3 при повышении концентрации ВаСЬ до 5-10 моль/л свидетельствует о росте глубины этой ямы, что может быть объяснено уменьшением вклада структурной составляющей вследствие перестройки ГС с ростом концентрации электролита. [c.185]

    В соответствии с этим можно выделить три зоны устойчивости, медленной коагуляции (агрегации) с порогом с и быстрой агрегации с порогом с . Поскольку с ростом с снижается высота энергетического барьера ы1 (уменьшается энергия отталкивания), наблюдаемая закономерность объясняется следующим образом [27] при с=с появляется некоторая вероятность прохождения через барьер наиболее быстрых частиц (для которых ыП> 1), далее вероятность, эта увеличивается и при с>се достигает предельной величины —единицы. Таким образом, область быстрой коагуляции (агрегации) определяется как область, в которой все соударения эффективны. Вычисление скорости агрегации (коагуляции) сводится к подсчету числа столкновений. Наоборот, когда не все столкновения эффективны, коагуляция называется медленной и ее скорость определяется как числом соударений, так и их эффективностью. [c.87]

    Физические воздействия в виде электрических и акустических полей существенно влияют на движение частиц и, следовательно, на вероятность их столкновения. При определенных энергиях частиц, получаемых ими в полях, они могут сближаться, преодолевая.рервый глубокий потенциальный барьер, образуя устойчивую систему. Этот вопрос применительно к коагуляции гидрозолей в ультразвуковом поле был рассмотрен Г. А. Мартыновым и Д. С. Лычниковым [34]. Таким образом, рассматриваемые воздействия могут оказывать влияние и на вторую груйпу факторов. [c.134]

    Взаимодействие в ближнем минимуме возможно при небольших значениях потенциального барьера и малой глубине дальней потенциальной ямы . Так как значение потенциальной энергии в ближнем минимуме обычно много больше значепия кинетической энергии частиц, то коагуляция в данном случае носит необратимый характер и сопровождается уменьшением дисперсности и удельной поверхности. [c.71]

    Более строго уменьшение свободной энергии при коагуляции можно оценить следующим путем. Если в результате коагуляции образовался агрегат (коагулят), содержащий Jf частиц, каждая из которых взаимодействует с Z соседями, то общее число контактов между частицами равно Если средняя энергия взаимодействия и пары частиц в контакте (энергия сцепления частиц) равна по абсолютной величине Ык= и, то общий ваигрыш свободной поверхностной энергии при коагуляции составляет j2Zjfu-K. [c.240]

    Более строго уменьшение свободной энергии при коагуляции можно оценить следующим путем. Если в результате коагуляции образовался агрегат (коагулят), содержащий К частиц, каждая из которых взаимодействует с Z с оседями, то общее число контактов между частицами равно 1/2 ZЖ. Если средняя энергия [c.287]

    Механизм коагуляции, и прежде всего гетерокоагуляцин, во многом определяется электрокинетическими свойствами дисперсной системы. Эмульсионные (коллоидные) частицы адсорбируют находящиеся в воде ионы преимущественно одного знака, которые значительно понижают свободную поверхностную энергию частиц. Ионы, непосредственно прилегающие к поверхности частицы, образуют так называемый адсорбционный слой. В этом слое может находиться также небольшое число противоположно заряженных ионов, суммарный заряд которых [c.172]

    При выводе второго критерия (XI.35) нигде не использовался тот факт, что взаимная потенциальная энергия частиц представляет собой сумму электростатической энергии отталкивания и молекулярной энергии притяжения. Поэтому критерий быстрой коагуляции (XI.35) справедлив не только для лиофобных, но и для лиофильных коллоидов, когда отталкивание вызвано структурной слагающей расклинивающего давления или наличием запдатных слоев поверхностно-активных веществ. [c.159]

    Энергия частиц недостаточна для преодоления барьера отталкивания, но глубина вторичного минимума достаточна для удержания частиц вместе. Происходит коагуляция за счет дальнего взаимодействия частиц. Зонтаг и Штренге [22, стр. 10] неправильно называют этот последний случай коагуляции флоку-ляцией . [c.33]

    Однако допущение, что условие наступления коагуляции не зависит от кинетической энергии частиц, становится некорректным при рассмотрении коагуляции частиц в динамических условиях. Такие условия реализуются на практике при протекании в концентрированных дисперсных системах любых гетерогенных процессов с внешним подводом механической энергии, сопровождающихся конвективным массопереносом, например при перемешивании. При этом могут развиваться высокие относительные скорости сближения частиц, особенно при возникновении разрывов сплошности в дисперсной системе [15], когда на участке длиной 50 мкм возможны перепады скорости движения до 1 м/с. В таких условиях наблюдается усиленное агрегато-образование в зоне разрыва сплошности. Аналогично при разрушении структуры под действием вибрации и ее распаде на агрегаты между ними возникают локальные разрывы сплошности, в которых, в свою очередь, идет агрегатообразование. При воздействии вибрации на концентрированную дисперсную систему частицам сообщаются высокие относительные скорости даже в том случае, если система монодисперсна за счет частых хаотических столкновений между частицами. При круговой частоте вибрации со к50 Гц и амплитуде а см начальная относительная скорость сближения частиц составит 0о 5 1 м/с. В разбавленной системе высокие относительные скорости частиц возможны, если система полидисперсна и при данных параметрах вибрационного или ультразвукового воздействия частицы мелкодисперсных фракций увлекаются средой в значительно большей степени, чем частицы грубодисперсных фракций. Агрегатообразование в разбавленной суспензии при воздействии на нее ультразвука изучалось в [16]. Оседание суспензии наблюдалось при интенсивности ультразвукового воздействия более ЫО Вт/м и частоте ультразвука у = 450 кГц, чему соответствует амплитуда смещения жидкости а = 40 нм. [c.14]

    Согласно Пешли, гидратные (точнее, структурные) силы могут возникать как на гидрофильных поверхностях с гидратированными полярными или ионными группами, так и на поверхностях, которые вначале не являются гидрофильными, но могут изменяться при адсорбции гидратированных форм и вести себя как гидрофильные ( вторичная гидратация ) [121]. В основе теории гидратных сил лежит положение о поверхностной адсорбции гидратированных ионов. Анализ явления показывает, что действие гидратных сил определяется не только плотностью адсорбированных катионов, но и изменением свободной энергии, связанным с замещением катионом иона Н3О+. Силы гидратации проявляются в достаточно концентрированных растворах (более 10 моль/л), и их величина определяется положением ионов в лиотропном ряду. Этот механизм, согласно которому взаимодействие гидратированных катионов приводит к возникновению сил отталкивания между поверхностями с достаточно высокой плотностью поверхностного заряда и слабой способностью к образованию водородных связей, может объяснить высокие пороговые концентрации, необходимые для коагуляции амфотерных частиц латекса полистирола [501] и золя SIO2 [502]. [c.173]

    Для выяснения влияния природы иона электролита на устойчивость дисперсии алмаза в растворах ЫС1, СзС1 и ВаСЬ в широком интервале pH (2—9) и концентраций (10 — 5-10 моль/л для ЫС1 и СзС1 и 5-10 =—5-10 моль/л для ВаСЬ) получены зависимости обратной счетной концентрации частиц 1//г от времени t. Влияние исследованных катионов на коагуляцию дисперсии алмаза различно. При концентрации выше 1-10 2 моль/л значения -потенциала алмаза в растворах ЫС1, КС1 и СзС1 существенно не различаются. Следовательно, и результаты теоретических расчетов энергии взаимодействия частиц на основании классической теории ДЛФО, и ожидаемые степени агрегации должны быть близки. Наблюдаемое в эксперименте существенное различие в агрегативной устойчивости в растворах хлоридов щелочных металлов может быть объяснено с привлечением представлений о ГС и влиянии их структуры и протяженности на агрегативную устойчивость исследованных систем. [c.185]

    Для подтверждения развиваемых представлений о значительной роли ГС воды в агрегативной устойчивости дисперсий гидрофильных частиц было исследовано влияние температуры на коагуляцию дисперсии алмаза. На основании литературных данных [30, 87, 477, 517] можно было ожидать, что с ростом температуры должен уменьшаться вклад положительной структурной составляющей в общую энергию взаимодействия частиц. Это, в свою очередь, должно снижать агрегативную устойчивость гидрофильных или гидрофилизированных дисперсий. Подтверждающее это положение экспериментальные данные, полученные для дисперсии алмаза в 5-10 М в растворе Ь1С1 при рН = 2 в интервале температур 20—50 °С приведены на рис. 10.9. Незначительная степень агрегации, наблюдаемая при 20°С (т=1,5), заметно увеличивается при возрастании температуры до 40 °С (т=1,8). Дальнейший рост температуры (50 °С) приводит к изменению самого характера процесса агрегации значительно увеличивается скорость коагуляции, образуются более крупные агрегаты, отсутствует выход на плато, наблюдавшийся при более низких температурах. При меньших концентрациях электролита (1-10 М Ь1С1) влияние повышения температуры становится менее заметным при 50°С в дисперсии алмаза наблюдается лишь незначительная степень агрегации. [c.187]


Смотреть страницы где упоминается термин Энергия частиц при коагуляции: [c.93]    [c.288]    [c.289]    [c.591]    [c.93]    [c.51]    [c.130]    [c.93]    [c.207]    [c.339]    [c.371]    [c.55]    [c.323]    [c.334]    [c.335]    [c.176]    [c.179]    [c.32]    [c.83]    [c.187]   
Смотреть главы в:

Коллоидная химия 1982 -> Энергия частиц при коагуляции


Коллоидная химия 1982 (1982) -- [ c.240 , c.249 , c.293 ]




ПОИСК





Смотрите так же термины и статьи:

Коагуляция

Энергия частиц



© 2025 chem21.info Реклама на сайте