Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Синапс нейромышечный

    Синаптогенез хорошо изучен при образовании нейромышечного синапса. Он не зависит от слияния миобластов с образо- [c.349]

    Синапс между аксоном и волокном мышцы имеет особую форму, известную как нейромышечная концевая пластинка. В нашей центральной нервной системе имеется - 10 синаптических связей между более чем 10 нейронов. Синапсы являются регуляторными центрами нервной системы. Их морфология и биохимия очень хорошо приспособлены к выполнению этих функций. В гл. 8 и 9 мы рассмотрим структуру и функцию синапсов, уделив особое внимание их онтогенезу и возможным механизмам синаптической модификации и. модуляции, а также тому, как синапсы реагируют на сильные факторы воздействия. [c.28]


    Ацетилхолин вызывает деполяризацию в постсинаптической мембране — возбуждающий постсинаптический потенциал (е. р. з.р.). В случаях некоторых нейромышечных синапсов данный потенциал называют потенциалом концевой пластинки (е. р. р.). Подобно локальному потенциалу, он быстро падает с увеличением расстояния от места возникновения и зависит от медиатора, т. е. если концентрация ацетилхолина увеличивается, деполяризация становится значительней. Если представить [c.120]

    Возникает целый ряд вопросов об участвующих здесь механизмах и молекулярных процессах. Какова молекулярная природа постулированного градиента и молекул клеточной поверхности, которые, как предполагается, необходимы для узнавания и специфичности контакта Какого рода молекулярные изменения превращают лабильный синапс в стабильный Какими химическими или физическими процессами они запускаются Нейромышечный синапс служит лучшей экспериментальной моделью для ответа на два последних вопроса. Мы уже отметили несколько примеров взаимодействия нервных и мышечных волокон и кратко обсудили молекулярные механизмы этих процессов (гл. 9). Необходимо также иметь в виду изменения в постсинаптической мембране, которые следуют за денервацией, т. е. прерыванием синаптической активности (гипер-сенситизацией, с. 264). Однако такие эксперименты не дают ответа на наши вопросы, а только свидетельствуют о способности к изменениям (пластичности) синаптических компонентов. Синаптическая пластичность не только интересна для понимания механизмов развития нервной системы, но, как указано выше, также для моделирования высших функций, таких, как обучение и память. Мы рассмотрим их в последующих разделах. [c.332]

    Наиболее хорошо изучен медиатор торможения "(-амино-масляная кислота (ОАВА), находящаяся в центральной нервной системе, а также в нейромышечных синапсах беспозвоноч-иы.х, например ракообразных, где она активирует СЬ-каналы. Иногда ацетилхолин тоже может быть медиатором торможения, поэтому возникает любопытная ситуация в одном и том же организме один и тот же медиатор оказывает возбуждающее и тормозящее действие. Например, у морского моллюска Ар1уз1а (иногда называемого морской улиткой, хотя правильнее морской слизень, или морской заяц) обнаружено три варианта эф- [c.121]

    Субсинаптическая мембрана — область постсинаптической мембраны, прямо противоположная преоинаптическому нервному окончанию, — с помощью электронной микроскопии [2] распознается как утолщение (рис. 8.3). В нейромышечных синапсах (концевых пластинках позвоночных) она сильно впячена. Пре- синаптическое нервное окончание содержит митохондрии и, кроме того, особые пузырьки — синаптические везикулы, в которых хранится нейромедиатор. [c.190]

    Классификация медиаторов как стимуляторных или ингибиторных нецелесообразна, так как их функция зависит от конкретного синапса и постсинаптического рецептора. Ацетилхолин, например, является стимулирующим медиатором в нейромышечной концевой пластинке, и в то же время проявляет ингибирующее действие в синапсе между блуждающим нервом и волокном сердечной мышцы. Мы уже упоминали о различии между никотиновыми и мускариновыми ацетилхолиновыми рецепторами. Однако на примере Aplysia было показано, что функция медиатора может оказаться еще более сложной. У этого организма имеется по крайней мере три типа холинэргических синапсов, или ацетилхолиновых рецепторов два ингибиторных и один возбуждающий. Ингибиторные синапсы различаются по ионной специфичности на одной постсинаптической мембране ацетилхолин увеличивает проницаемость для ионов калия, а на другой — для ионов хлора, в обоих случаях вызывая гиперполяризацию мембраны. На возбуждающем синапсе ацетилхолин вызывает деполяризацию, открывая натриевые каналы. Аналогичная двойная функция описана для медиаторов допамина и серотонина. Поэтому можно сказать только то, что ацетилхолин и глутамат, как правило, являются стимулирующими медиаторами, а глицин, 7-аминомасляная кислота и нор-адреналин — ингибиторными. [c.214]


    Местная локализация рецептора может также влиять на синаптическую функцию другим способом. Структура холинэргической концевой пластинки (рис. 8.2) была представлена как прототип синапса. Моноаминэргические нервные окончания симпатических нейронов, напротив, образуют утолщения (рис. 9.20), геометрия которых сильно отличается от геометрии нейромышечного синапса. Здесь рецепторы, вероятно, не концентрируются до такой же степени в специализированных структурах (пресинаптических уплотнениях). Путь медиатора до рецептора может быть таким способом удлинен и перенос информации модулирован путем взаимодействия с другими участками высвобождения медиатора. [c.297]

    Однако имеются и некоторые различия. Известно, что кураре и атропин блокируют нейромышечные окончания и симпатические ганглии позвоночных от действия экзогенного ацетилхолина и раздражения электрическим током. Эти места нервной системы позвоночных являются холинэргическими, и предполагается, что кураре и атропин десенсибилизируют их к экзо- и эндогенному аце-тилхолину. Ни кураре, ни атропин не оказывают действия на тараканов при инъекции [13] и не нарушают передачу возбуждения через синапсы шестого брюшного ганглия таракана [14]. Известно, что в нейро у1ышечных соединениях насекомых отсутствует холипэстераза [27] и, следовательно, эти места не обладают холинэргическим характером. Поэтому не удивительно, что инъектирован-ные дозы кураре и атропина не оказывают действия в этих местах, но отсутствие нарушения в ганглионарных синапсах трудно объяснить, если только не принять, что атропин и кураре не проникают до критических центров ганглия. [c.148]


Смотреть страницы где упоминается термин Синапс нейромышечный: [c.202]    [c.203]    [c.727]   
Нейрохимия Основы и принципы (1990) -- [ c.331 ]




ПОИСК







© 2024 chem21.info Реклама на сайте