Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окисление биологическое митохондриальное

    Несопряженное дыхание (свободное окисление) выполняет важные биологические функции. Оно обеспечивает поддержание температуры тела на более высоком уровне, чем температура окружающей среды. В процессе эволюции у гомойотермных животных и человека сформировались специальные ткани (бурый жир), функцией которых является поддержание постоянной высокой температуры тела за счет регулируемого разобщения окисления и фосфорилирования в митохондриальной дыхательной цепи. Процесс разобщения контролируется гормонами. [c.313]


    Основным типом биологического окисления является тканевое дыхание, протекающее в клеточных митохондриях (в связи с этим тканевое дыхание еще называется митохондриальным окислением). [c.37]

    В настоящее время в хорошо упорядоченном митохондриальном аппарате переноса электронов восстановление ФАД через НАД-Нг и последующее восстановление цитохромных пигментов восстановленным ФАД, вероятно, не требует участия возбужденных состояний этих молекул. Однако природа синглетных и триплетных возбужденных состояний этих кофакторов могла играть важную роль на ранних стадиях их отбора для процессов переноса электронов. Ступенчатое окисление, последний этап которого осуществляется за счет молекулы кислорода, почти несомненно произошло на более поздней стадии биологической эволюции. [c.348]

    Как выше отмечалось, тканевое дыхание (митохондриальное окисление) является основным способом биологического окисления, т. е. окисления органических соединений в живом организме. Однако наряду с тканевым дыханием в организме еще имеются и другие способы окисления. [c.41]

    О2, цитохром с — митохондриальный белок, участвующий в процессах биологического окисления. Гомологичные белки большинства видов  [c.25]

    Необходимо отметить, что образовавшиеся в процессе превращения глицеральдегид-З-фосфата 2 молекулы НАДН в дальнейшем при окислении могут давать не 6 молекул АТФ, а только 4. Дело в том, что сами молекулы внемитохондриального НАДН не способны проникать через мембрану внутрь митохондрий. Однако отдаваемые ими электроны могут включаться в митохондриальную цепь биологического окисления с помощью так называемого глицеролфосфатного челночного механизма (рис. 10.10). Цитоплазматический НАДН сначала реагирует с цитоплазматическим ди-гидроксиацетонфосфатом, образуя глицерол-З-фосфат. Реакция катализи- [c.349]

    Биологический смысл, заключенный в гомологии последовательностей, лучше всего можно проиллюстрировать на примере цитохрома с-железосодержащего митохондриального белка, участвующего в качестве переносчика электронов в процессах биологического окисления в эукариотических клетках. Молекулярная масса этого белка у большинства видов составляет около 12 500 при этом его полипептидная цепь содержит 100 или несколько большее число аминокислотных остатков. Бьии установлены аминокислотные последовательности для цитохромов с, выделенных более чем из 60 видов, и во всех исследованных белках 27 положений в полипептидной цепи оказались занятыми одинаковыми аминокислотными остатками (рис. 6-14). Это указывает на то, что все эти остатки играют важную роль в определении биологической активности цитохрома с. В других положениях аминокислотные остатки могут варьировать от вида к виду. Второй важный вывод, сделанный на основе анализа аминокислотных последовательностей цитохромов с, состоит в том, что число остатков, по которым различаются цитохромы с любых двух видов, пропорционально филогенетическому различию между данными видами. Например, молекулы цитохромов с лошади и дрожжей (эволюционно весьма далеких видов) различаются по 48 аминокислотным остаткам, тогда как цитохромы с гораздо более близких видов— курицы и утки-только по двум остаткам. Что же касается цитохромов с курицы и индейки, то они имеют идентичные аминокислотные последовательности. Идентичны также цитохромы с свиньи, коровы и овцы. Сведения о числе различий в аминокислотных последовательностях гомологичных белков из разных видов используют для построения эволюционных карт, отражающих последовательные этапы возникновения и развития различных видов животных и растений в процессе эволюции (рис. 6-14). [c.155]


    В печени содержатся ферменты, при участии которых происходит фосфоролиз гликогена и дальнейшее превращение его по гли-колитическому пути. Этот процесс может протекать в гомогенате печени. При добавлении в инкубационную среду фтористого натрия из-за связывания ионов магния гликолиз останавливается на стадии образования 3-фосфоглицериновой кислоты, а в среде накапливается НАДН+Н" . Если гликолитические превращения происходят в атмосфере кислорода, образующийся НАДН+Н посредством челночного механизма передает электроны в митохондриальную цепь биологического окисления, где в результате окислительного фосфорилирования образуется АТФ из АДФ и Рн. Течение окислительного фосфорилирования обнаруживают по убыли Рн в инкубационной Среде. [c.135]


Смотреть страницы где упоминается термин Окисление биологическое митохондриальное: [c.313]    [c.277]    [c.335]    [c.25]    [c.187]   
Биохимия (2004) -- [ c.197 ]




ПОИСК







© 2025 chem21.info Реклама на сайте