Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гомологичные белки

    В гено.ме обнаруживаются также рассеянные или находящиеся в кластерах гены, кодирующие гомологичные белки со сходными функциями. Например, это гены для разных типов актина, тубули-на, белков оболочки яйца насекомых, гонадотропинов позвоночных. Перечисление этих генов показывает, что семейства таких генов могут выпатнять как общеклеточные, так и специализированные функции. Такие мультигенные семейства, включающие по 5—20 копий и кодирующие белки со сходными функциями, также можно отнести к фракции умеренно повторяющихся последовательностей [c.190]


    Синтезируемые в клетках полимеры подвергаются распаду. Например, полупериод жизни большинства белков в печени крыс и кроликов составляет всего лишь 1—8 дней [29, 30]. Что касается ферментов, то по крайней мере у одного из них полупериод жизни составляет всего лишь 11 мин, тогда как другие ферменты могут сохраняться в течение недель [31]. Если рассматривать разные виды живых организмов, то полупериоды жизни гомологичных белков оказываются приблизительно пропорциональными продолжительности жизни организма [32]. [c.495]

    Гомологичные белки разного происхождения могут иметь определенное структурное сходство, которое характеризуется более или менее сильными реакциями со специфическими антителами против одного из этих белков, взятого в качестве иммуногена. Такие перекрестные реакции между индивидуальными, отдельно взятыми белками разного происхождения использовались в исследованиях по систематике и филогенезу [111]. Но непредвиденные перекрестные реакции могут также обнаружиться у белков, которые явно не сходны между собой ни в функциональном, ни в эволюционном отношении однако они тем не менее имеют структурное сходство, которое подтверждено анализом последовательностей аминокислот [52]. Поэтому такие перекрестные реакции интересны с методической точки зрения при исследованиях структурных гомологий, но могут также представлять неудобства в некоторых областях, как, например, выявление происхождения белков в пищевых продуктах. При решении некоторых из этих проблем распознавания, по существу, необходимо, чтобы специфические антитела к белкам растения какого-то определенного ботанического вида не давали перекрестной реакции с белками растения соседнего вида. Недавно описаны возникающие на практике трудности в связи с использованием антисывороток, вызывающих недостаточно контролируемые и приводящие к ошибочным результатам пере- [c.114]

    После того как установлена первичная структура- какого-либо белка, обычно нет необходимости проводить полное изучение аминокислотной последовательности у гомологичных белков из близких (соответствующих) источников. Быстрый ответ можно получить, используя технику трипсинового фингерпринта . Для этого подвергают гидролизу трипсином белок с известной структурой и параллельно ему гомологичный белок полученные в результате гидролиза пептиды разделяют обычно с помощью двумерного электрофореза или хроматографии. Если разница в последовательностях невелика, то больщинство пептидов должны занимать идентичное положение на двумерном фингерпринте. Те немногие пептиды, которые отличаются по подвижности, необходимо элюи-.ровать и подвергнуть аминокислотному анализу по Эдману. Эта техника особенно полезна при изучении аномальных гемоглобинов, которые отличаются от нормального природой только одного участка. [c.276]


    У нейротоксина а, как и у остальных четырех гомологичных белков, вместо остатка Ser находится Pro . Такая замена делает невозможной реализацию R-состояния у предшествующего остатка ys , что приводит к дискриминации а-спиральных структур и 9 из 10 -структур, представленных в табл. IV. 1. В эту группу не входит циклическая конформация Leu - ys , в которой ys находится в В-состоянии. В линейном варианте гомологичных белков (с Рго ) она становится глобальной. В циклической конформации фрагмента нейротоксина II Leu - ys остаток Ser имеет угол ф = -67,2°, т.е. близкий к фиксированному углу ф = -57,6° для пролина, а угол у = 151,3° у Ser находится в области, дозволенной для пролина. Расчет линейного и циклического фрагментов Leu - ys нейротоксина показал, что включение Pro вместо Ser не вызывает стерических затруднений, не изменяет конфигурацию дисульфидного мостика и лишь незначительно сказывается на значении угла v/( ys ), который изменяется с 134,5 до 124,9°. Абсолютная конформационная энергия и величины стабилизирующих межостаточных взаимодействий в структурах нейротоксинов П и а практически совпадают. [c.424]

    Предсказать заранее все последствия -аминокислотных замен, в которых не участвует Pro, как правило, невозможно. Можно лишь утверждать, что в данном случае не происходит очевидное элиминирование ни одного типа структур. Это объясняется возможностью реализации у 19 аминокислотных остатков состояний с R-, В- и L-формами основной цепи (исключением является только Pro) и отсутствием стерических напряжений между соседними остатками при всех формах основной цепи шейпов ей/. Подтверждением сказанному может служить явление гомологии белков, т.е. реализация трехмерных структур одной и той же формы основной цепи у различных, но непременно эволюционно отобранных последовательностей. На примере нейротоксина II (см. гл. 15) показано, что у серии гомологичных белков структуры одной и той же формы основной цепи являются во всех случаях глобальными. [c.548]

    Второй способ идентификации участков требует привлечения гомологичных белков. Он основывается на предположении, что разные по жесткости фрагменты белковой цепи неодинаково чувствительны к аминокислотным заменам. Можно полагать, что у конформационно-лабильных фрагментов мутации более вероятны, чем у жестких. Структурирование последних происходит на самой ранней стадии сборки и только за счет стабилизирующих контактов между близкорасположенными по цепи остатками. Такие взаимодействия по сравнению с контактами внутри лабильных фрагментов должны быть гораздо более избирательными, а, следовательно, остатки жестких фрагментов более консервативными. [c.593]

    Самосогласованность можно использовать в качестве критерия качества. Существенно иной подход к оценке качества метода предсказания состоит в применении его к нескольким гомологичным белкам. Можно полагать, что такие белки свертываются одинаковым образом и имеют одинаковую вторичную структуру. Следовательно, предсказания должны быть инвариантны по отношению к наблюдаемым заменам аминокислот чем меньше вариаций, тем лучше метод предсказания. Такая проверка качества трех методов предсказания была проведена на 24 гомологичных последовательностях рибонуклеазы поджелудочной железы [385], [c.151]

    Метод составления пептидных карт, получивший образное название метод отпечатков пальцев , используется при определении сходства или различия гомологичных белков по первичной структуре. Белок инкубируют с каким-либо протеолитическим ферментом. Часто порции белка инкубируют как с пепсином, так и с трипсином. При этом вследствие гидролиза строго определенных пептидных связей образуется смесь коротких пептидов, легко разделяемых с помощью хроматографии в одном направлении и электрофореза-в другом, под углом 90° от первого (пептидная карта). [c.56]

    Обычно для последовательностей гомологичных белков используется одинаковая нумерация. Запись гомологичных последовательностей несет значительно больше информации, если она выполнена в виде единой схемы, как это представлено на рис. 7.1, а. Здесь для всех последовательностей используется одинаковая нумерация, что возможно, однако, лишь в том случае, если допустимы пропуски аминокислот—делеции. Трудности возникают тогда, когда при последующих исследованиях обнаруживают гомологичные последовательности, содержащие один или более дополнительных остатков. Публикуя эти данные, обычно сохраняют установленную схему нумерации, а дополнительным остаткам приписывают [c.157]

    В процессе эволюции белков происходят замены отдельных остатков, вставки и делеции нескольких остатков, удвоение и слияние генов. Для белков основные этапы исторического процесса знаменуются заменами аминокислотных остатков в полипептидной цепи. С течением времени эти замены накапливаются, так что в конечном счете какое-либо сходство между исходной и окончательной аминокислотными последовательностями может исчезнуть. Однако, как правило, даже после того как исчезнет сходство аминокислотных последовательностей двух гомологичных белков, сохраняется соответствие в укладке их цепей. Тенденции к замещениям заметно отличаются у остатков в разных положениях в цепи (рис. 7.1, б). Различия гомологичных белков не исчерпываются за- [c.197]

    Следует учитывать, что нам известна структура только существующих в настоящее время белков. Поэтому мы можем судить об эволюционных изменениях в прошлом лишь по имеющимся различиям между гомологичными белками. [c.197]


    Гомологичные белки возникают вследствие специализации или дифференциации. Сопоставление гомологичных белков позволяет выявить некоторые общие закономерности в строении белков [250], а, как уже отмечалось, исследование эволюции белков способствует решению многих общих биологических проблем. В связи с этим полезно установить различие в понятиях специализации и дифференциации белков [473]. Под специализацией подразумевается эволюция гомологичных белков, выполняющих одинаковую функцию в различных организмах. Напротив, дифференциация белков есть процесс, ведущий к функциональному разнообразию гомологичных белков часто внутри одного организма. [c.198]

    Процесс, в результате которого гомологичные белки наделяются различной функцией, называют процессом дифференциации белков [473]. В ферментах мутация в одном или двух положениях аминокислот может изменять субстратную специфичность белка [508]. Соответственно изменение предрасположенности к субстрату [c.211]

    При сравнении гомологичных белков, выполняющих разные функции, не предполагают и действительно часто не обнаруживают постоянства скорости фиксации аминокислотных замен. Это не создает больших помех при построении генеалогии белков, выполняющих различные функции, однако к датировке этапов эволюции на основе структурных сопоставлений таких белков нужно относиться с осторожностью. [c.212]

    В процессе эволюции белков можно выделить тенденции к специализации и дифференциации. Специализированные белки выполняют одну и ту же функцию в разных организмах и могут использоваться для установления генеалогии организмов. Однако следует отметить, что специализация белков не направляет эволюцию организмов. Дифференциация белков — это процесс, ведущий к функциональному разнообразию гомологичных белков. Таким образом, исследование эволюции белков не только способствует проникновению в детали структурной организации белков, но также позволяет установить связи между белками, находящимися в совершенно различных частях метаболического пути. Таким образом, можно внести определенный порядок в огромный перечень существующих белков и вместе с тем выявить аспекты эволюции метаболических путей. Важным механизмом дифференциации белков является мультипликация и слияние генов. [c.242]

    Как и дивергентная эволюция (гомологичных белков), конвергентная эволюция (аналогичных белков) происходит на всех стадиях.. Например, обычным явлением представляется конвергенция в отношении функции. Может также происходить конвергенция в отношении структуры, однако этот процесс трудно проследить на основании уровня современных знаний. В частности, при исследовании очень отдаленного эволюционного родства не всегда оказывается возможным провести различие между аналогичными и гомологичными чертами сходства. [c.242]

    Биологическая эволюция заключается не только в замещении аминокислотных остатков в соответствующих молекулах из различных видов. Очевидно, что дублированный ген существовал в различные периоды, приводя к эволюции гомологичных белков из одного и того же гена наследственности. Так, примерно 40% аминокислотной последовательности трипсина и химотрипсина идентичны и примерно еще 10% представляет собой небольщие замещения. Поэтому неудивительно, что обе молекулы имеют сходные конформации и биологические функции. [c.282]

    Б. Рост и К. Сандер решение видят в отказе от предсказания конформационных состояний отдельных остатков последовательности в пользу вторичных структур у целых сегментов, используя данные о гомологичном белке, трехмерная структура которого известна [222]. Сравнение 130 пар структурно гомологичных белков с отличающимися аминокислот-яыми порядками показало, что значительное отклонение в положениях и цлинах сегментов вторичных структур во многих случаях может происходить в пределах приблизительно одинаковых пространственных форм свернутых цепей. Иными словами, отличия в двух близких аминокислотных последовательностях в большей мере отражаются на вторичных структурах, чем на третичных. Поэтому, полагают авторы, важна не локализация а-спиралей, -складчатых листов, -изгибов и Р-петель с точностью до одного аминокислотного остатка, а их ориентировочное отнесение, совместимое с нативной конформацией гомологичного белка, установленной экспериментально. Включение информации о белковых семействах ведет к увеличению показателя качества Q3 до 70,8%, что соответствует точности экспериментального определения вторичных структур с помощью спектров КД. Однако в развитом Ростом и Сандером методе упрощение проблемы предсказания вторичных (ГГруктур и на их основе третичной столь велико и бесконтрольно, что грани между благими желаниями авторов, субъективным восприятием полученных результатов и декларируемыми количественными показателями точности становятся неразличимы. [c.519]

    Дж. Грир предложил конструировать экспериментальные модели, используя семейство гомологичных белков и выделяя в их последовательностях общие участки, которым приписываются конформационные состояния белка, изученного рентгеноструктурно [237, 238]. Такой способ был опробован им при формировании расчетной модели белка комплемента С5а с привлечением структуры СЗа [239] и ренина человека на основе структур нескольких последовательностей аспартатных протеиназ [240]. Аналогичный подход с использованием консервативных участков гомологов для создания у исследуемого белка структурного кора полипептидной цепи был предложен также Т. Бланделлом и соавт. [241-244]. Недавние исследования модельных структур протеиназ, применяемых в медицине, показали, что при использовании информации о семействе белков для выявления активного центра полезными могут оказаться гомологи даже с невысоким содержанием идентичных участков ( 30%) [245-248]. [c.522]

    Детальное изучение конформационных возможностей природных олигопептидов сделало реальным переход к априорному расчету трехмерной структуры белков. Первый шаг в этом направлении заключался в теоретическом исследовании конформационных возможностей свободного фрагмента из 23 аминокислотных остатков белка нейротоксина П. Конформация данного фрагмента нейротоксина П практически полностью совпала с известной геометрией соответствующего участка 1-24 гомологичного белка эрабутоксина Ь. Таким образом, расчет доказал, что механизм спонтанной и безошибочной сборки белковой цепи заключается в неза- [c.588]

    Нагано также расширил использующийся базовый набор путем добавления (с малым весом) информации, полученной из аминокислотных последовательностей белков, гомологичных белкам с известной структурой, и в своей более поздней работе [356] он предпринял попытку учета частот встречаемости и склонности триплетов. Следует отметить, что в методе Нагано в неявном виде включались и синглеты, поскольку некоторые линейные комбинации склонностей дублетов эквивалентны склонности синглета. [c.135]

    Метод был применен к предсказанию общего свертывания цепи группы родственных белков (цитохромы с или иммуноглобулины, разд. 9.1). В такой группе многие аминокислотные последовательности характеризуются аналогичной укладкой цепи, т. е. идентичными углами (0, 115). Поэтому для данного остатка в положении г можно составить триплеты (1 — 1, , + 1) по всем гомологичным белкам, а затем с помощью таблицы (0, г) ) получить нх углы0 . Средние из этих углов (ср, 4 ) выбираются в качестве предсказате- [c.135]

    Существенную помощь в подобных случаях оказывает знание трехмерной структуры белков. Имеющиеся в настоящее время данные показывают, что обычно остатки, находящиеся во внутренней части белка, мало подвержены изменениям и что все различия между гомологичными белками (замены аминокислот, делеции или вставки петель в цепи) касаются поверхности молекул. Таким образом, посследовательности отдаленно родственных белков можно сопоставлять по остаткам, которые занимают геометрически сходные позиции в пространственной структуре. [c.198]

    Лактальбумин [517, 528] и лизоцим [518, 529—531] представляют классический пример двух белков с аналогичными последовательностями, но различными функциями и различными частотами фиксации мутаций. Предположение о структурном подобии обоих белков было впервые выдвинуто в 1958 г. и подтверждено спустя 10 лет [523, 533] путем сравнения аминокислотных последовательностей. Некоторые важные для сопоставления свойства обоих белков приведены в табл. 9.3. Трехмерную структуру бычьего лактальбумина определили, основываясь на структуре лизоцима белка куриного яйца, путем построения Л10дели [534] и последующей минимизации энергии [501, 535]. Эта процедура предполагает идентичность укладки обеих цепей, что представляется достаточно обоснованным, если учесть большое сходство аминокислотных последовательностей обоих белков (табл. 9.3). Этот пример показывает также, каким образом можно использовать данные по одному белку для структурного анализа отдаленно родственных гомологичных белков. [c.215]

    В настоящее время получены некоторые данные о том, что глобины родственно связаны с определенными цитохромами Ь-типа в этом отношении наиболее интересны цитохромы 2- 5 и Ь 2- Данные об этих цитохромах приведены в табл. 9.6. Как было предсказано по спектрам протонного магнитного резонанса [556] и установлено сравнением аминокислотных последовательностей [557], цитохром 65-гсф (гем-связывающий фрагмент) и цитохром 62-гсф представляют собой гомологичные белки с различием последовательностей около 72"о (185 РАМ). Подобие оказывается еще более разительным, если сопоставить последовательность 2 Гсф с известной кристаллической структурой 65-гсф [297, 557]. Гомологические связи цитохромов 2 гсф и ба-гсф показывают, что не только эти два белка, ной все цепн, [c.222]

    Детали строения гомологичных белков могут быть следствием конвергентной зволюции. В процессе последующего развития белков от некоторого общего предшественника также можно выявить некоторые аспекты конвергентной эволюции в отношении общего построения этих белков [273, 597]. Например, в малом варианте цитохрома jji глубоко лежащая пропионовая группа гема связана водородной связью с Тгр-56, а в большом варианте митохондриального цитохрома с — с Тгр-59 [509]. В этом случае важные для функции остатки Тгр занимают неэквивалентные положения в гомологических полипептидных цепях. Это показывает, что моделирование аминокислотной последовательности с фиксацией положения функциональных остатков может привести к неверным выводам. [c.233]

    Первичная структура белка — своего рода текст, написанный двадцатибуквенным алфавитом. Смысл, содержание этого текста, состоит в биологическом функционировании белка, которое, в конечном счете, определяется первичной структурой. В белковых текстах запечатлена биологическая эволюция — сопоставление гомологичных белков, выполняющих одну и ту же функцию в разных видах, позволяет выявить различия в текстах. Эти различия, [c.35]


Смотреть страницы где упоминается термин Гомологичные белки: [c.422]    [c.425]    [c.521]    [c.522]    [c.523]    [c.524]    [c.526]    [c.208]    [c.217]    [c.282]    [c.591]    [c.208]   
Принципы структурной организации белков (1982) -- [ c.151 , c.197 , c.233 ]

Принципы структурной организации белков (1982) -- [ c.151 , c.197 , c.233 ]

Основы биохимии Т 1,2,3 (1985) -- [ c.155 , c.156 , c.157 , c.192 , c.196 , c.202 ]

Генетика с основами селекции (1989) -- [ c.484 ]




ПОИСК





Смотрите так же термины и статьи:

Гомологичность



© 2025 chem21.info Реклама на сайте