Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки анализ аминокислотной последовательности

    Двумерное разделение пептидов, наиример гидролизатов белков, на целлюлозных н силикагелевых пластинках, где в одном (чаш е первом) направлении используется электрофорез в тонком слое (ТСЭ) при кислом pH буфера, а во втором — распределительная ТСХ. Оно применяется как для целей идентификации и сопоставления родственных белков (например, для выявления мутационных или патологических изменений), так и в качестве препаративного метода для последуюш,его анализа аминокислотной последовательности в пептидах. [c.460]


    Использование протеаз с различной специфичностью и проведение химического гидролиза пептидных связей по разным аминокислотным остаткам позволяют получать перекрывающиеся фрагменты, анализ аминокислотной последовательности которых дает возможность определять первичную структуру целого белка. [c.139]

    Анализ аминокислотных последовательностей компонентов активной фракции обнаружил наличие в полипептидных цепях повторяющегося участка -Ala-Ala-Thr- с двумя дополнительными остатками аланина на С-конце полипептидной цепи. Для этих белков предполагается гибкая вытянутая структура, образующая в воде неидеальные и нерегулярные формы и тем самым нарушающая нормальный рост кристаллов льда. Гидрофильная [c.429]

    В историческом плане именно глобины определили появление идей о специализации и дифференциации белков. Еще в 1865 г. была выдвинута гипотеза, по которой глобины мышц [551] и глобины красных кровяных телец [552] представляют собой идентичные или родственные белки. Почти через 100 лет рентгеноструктурный анализ гемоглобина [553] и миоглобина [185] показал, что для обоих белков характерен особый способ свертывания цепи, так называемое свертывание типа глобинов (рис. 8.4). По данным анализа аминокислотной последовательности миоглобина [554] и гемоглобина [553], завершенного несколько позже, различие между ними составляет около 73% (192 РАМ). [c.222]

    Определение аминокислотной последова- Автоматический анализ аминокислотной последовательности белков тельности в белках [c.247]

    Таким образом, уже на первых объектах анализа трехмерной структуры было установлено, что укладка цепи может сохраняться в высокой степени. Кроме того, стало очевидным, что белки, выполняющие различные функции, существующие в разных тканях н в разных организмах, могут иметь большое сходство и, следовательно, одинаковое происхождение. Эти факты явились важными стимулами к использованию структурного анализа белков, и в особенности анализа аминокислотной последовательности, для изучения эволюции на уровне макромолекул [145]. [c.222]

    Разделение смесей аминокислот и пептидов имеет исключительно важное значение при анализе аминокислотной последовательности белков. Зональный электрофорез, вообще говоря, не позволяет за один прием разделять сложные смеси из 10—20 авш-нокислот. В таких случаях предварительно проводят разделение [c.104]

    Б. МЕТОДОЛОГИЧЕСКИЕ ВОПРОСЫ АНАЛИЗА АМИНОКИСЛОТНОЙ ПОСЛЕДОВАТЕЛЬНОСТИ БЕЛКОВ [c.31]

    Изложенный выше метод управляемого протеолиза играет существенную роль в анализе аминокислотной последовательности высокомолекулярных белков. [c.36]

    После появления секвенатора время анализа аминокислотной последовательности белка стало определяться стадией очистки [c.128]


    Анализ аминокислотной последовательности пептвдов и белков этим методом может выполняться вручную или с помощью специальных автоматических приборов — секвенаторов, использование которых в настоящее время значительно упростило процесс аминокислотного анализа. В сек-венаторах белок в виде тонкой пленки помещают во вращающийся цилиндрический сосуд, где он подвергается реакции по Эдману. Реактивы и растворители проходят над иммобилизованной белковой пленкой, а высвобождающиеся ФТГ-АК подвергаются жидкостной хроматографии при высоком давлении и таким образом идентифицируются. С помощью сек-венатора можно определить аминокислотную последовательность полипептида или белка, содержащего до ста аминокислотных остатков. [c.60]

    Белковым компонентом ряда ДНП-частиц, например спермы рыб, являются протамины — низкомолекулярные основные белки (мол. в. 4000—12 ООО), характеризующиеся высоким содержанием аргинина (70 — 80%). По сравнению с другими белками протамины имеют ограниченный набор аминокислот (аргинин, аланин, серин, пролин, треонин, лизин, гистидин). Структура ДНП-частиц, содержащих протамины, — нуклео-протаминов предложена на основании данных рентгеноструктурного анализа и анализа аминокислотных последовательностей [c.457]

    Бернет считал, что такое разнообразие вызывается мутациями в определенной линии клеток крови в ходе эмбрионального и постнатального развития животного. После того как была выяснена четвертичная структура и природа изменчивости молекул антител, теория Бернета была перефразирована следующим образом мутации, которые селекционирует антиген, возникают в генах, определяющих структуру легких и тяжелых цепей антител, причем в той части этих генов, которая соответствует вариабельным участкам полипептидных цепей. На фиг. 255 представлены результаты анализа аминокислотной последовательности вариабельного фрагмента легкой цепи у различных молекул антител человека. Видно, что эти данные очень напоминают аминокислотные замены, обнаруженные у мутантов по белку оболочки вируса табачной мозаики (фиг. 217). Легкие цепи отличаются друг от друга по разным положениям полипептидной цепи, и если сопоставить эти различия с таблицей генетического кода (табл. 27), то видно, что все они могут быть объяснены заменами одиночных оснований в триплетах. Таким образом, характер изменчивости первичной структуры белков антител находится в соответствии с мутационной гипотезой Бернета. [c.521]

    Анализ аминокислотных последовательностей имеет целью рационализацию огромного объема уже имеющихся данных о первичной структуре полипептидов. Основной метод этого анализа — установление элементов сходства в структурах разных белков. Сопоставление консервативных участков цепи с функциональными характеристиками молекулы позволяет объединить многие белки в одну группу. Например, рецепторы, связанные с О-белками (мускариновые, опиоидные, адренорецепторы и др.), образуют семейство с определенными сигнальными и фармакологическими свойствами. [c.75]

    Осуществленный таким способом гидролиз пептидньк связей-это необходимый шаг в определении аминокислотного состава белков и последовательности составляющих их аминокислотных остатков. Пептидные связи могут быть гидро-лизованы также под действием некоторых ферментов, таких, как трипсин и химотрипсин, представляющие собой протеолитические (белок-расщепляю-щие) ферменты, секретируемые в кишечник и способствующие перевариванию, т. е. гидролитическому расщеплению, белков, входящих в состав пищи. Если кипячение пептидов с кислотой или щелочью приводит к гидролизу всех пептидных связей независимо от природы и последовательности соединенных при их помощи аминокислотных звеньев, то трипсин и химотрипсин осуществляют каталитическое расщепление пептидов избирательным образом. Трипсин гидролизует только те пептидные связи, в образовании которьсс участвуют карбоксильные группы лизина или аргинина. Химотрипсин же атакует только те пептидные связи, которые были образованы с участием карбоксильных групп фенилаланина, триптофана и тирозина. Как мы увидим дальше, такой избирательный ферментативный гидролиз оказьшается очень полезным при анализе аминокислотных последовательностей белков и пептидов. [c.130]

    Мы приводили данные, полученные при анализе аминокислотной последовательности в двух изоферментах ЛДГ, соотношение количеств которых очень закономерно сдвигается в ту или иную сторону в зависимости от пролиферативной активности ткани. Ряд этих данных косвен-ио свидетельствует о возможном участии (наряду с механизмом генетической регуляции) в изменении аминокислотного состава белка и рибосомального механизма ошибочного включения аминокислот, зависящего в основном только от продолжительности экспонирования кодонов. [c.106]

    Масс-спектроскопия приобрела особое значение при анализе аминокислотных последовательностей белков (разд. 3.6.1.2.2). Для определения фе-нилтиогидантоина используют масс-спектроскопию полевой десорбции ионов, причем применяется прибор высокого разрешения с фотодетектором. [c.65]


    Принципиально первичную структуру белков можно определять путем непосредственного анализа аминокислотной последовательности или путем расшифровки ну1слеотидноп последовательности соответствующих генов с помощью генетического кода. Естественно, наибольшую надежность обеспечивает сочетание этих методов. [c.33]

    Они нековалентно ассощшрованы с небольшим белком-p2-JЦ <кpo-глобулитм, который кодируется геном, находящимся в другой хромосоме. Анализ аминокислотной последовательности этого белка (мол. масса 11500) показал, что он гомологичен отдельному домену иммуноглобулинов. Это указывает на эволюционную связь между гликопротеинами МНС класса I и иммуноглобулинами. В пользу такой связи свидетельствует, кроме того, найденная недавно гомология аминокислотных последовательностей между одной из петель (с дисульфидной связью) гликопротеинов класса [c.59]

    К середине 60-х годов было показано, что белки антител не представляют никакого исключения из этого правила оказалось, что антитела против разных антигенов отличаются по последовательности аминокислот и что специфическая структура любого антитела четко определяется его аминокислотной последовательностью. Было показано, что молекула антитела обладает четвертичной структурой и состоит из двух пар одинаковых полипептидных цепей — пары легких цепей длиной примерно 200 аминокислот и пары тяжелых цепей длиной примерно 400 аминокислот (фиг. 254). Молекула антитела содержит два центра, комплементарных антигену, стерессиецифическая конформация этих центров обусловлена переплетением противолежащих участков одной тяжелой и одной легкой цепи. Анализ аминокислотных последовательностей молекул различных антител показал, что первые 100 аминокислотных остатков со стороны аминоконца как легких , так и тяжелых цепей составляют вариабельный участок, аминокислотная последовательность которого у различных антител различна. Остальные 100 аминокислот легких цепей и 300 аминокислот тяжелых цепей составляют постоянный участок мо- [c.519]

    Биологический смысл, заключенный в гомологии последовательностей, лучше всего можно проиллюстрировать на примере цитохрома с-железосодержащего митохондриального белка, участвующего в качестве переносчика электронов в процессах биологического окисления в эукариотических клетках. Молекулярная масса этого белка у большинства видов составляет около 12 500 при этом его полипептидная цепь содержит 100 или несколько большее число аминокислотных остатков. Бьии установлены аминокислотные последовательности для цитохромов с, выделенных более чем из 60 видов, и во всех исследованных белках 27 положений в полипептидной цепи оказались занятыми одинаковыми аминокислотными остатками (рис. 6-14). Это указывает на то, что все эти остатки играют важную роль в определении биологической активности цитохрома с. В других положениях аминокислотные остатки могут варьировать от вида к виду. Второй важный вывод, сделанный на основе анализа аминокислотных последовательностей цитохромов с, состоит в том, что число остатков, по которым различаются цитохромы с любых двух видов, пропорционально филогенетическому различию между данными видами. Например, молекулы цитохромов с лошади и дрожжей (эволюционно весьма далеких видов) различаются по 48 аминокислотным остаткам, тогда как цитохромы с гораздо более близких видов— курицы и утки-только по двум остаткам. Что же касается цитохромов с курицы и индейки, то они имеют идентичные аминокислотные последовательности. Идентичны также цитохромы с свиньи, коровы и овцы. Сведения о числе различий в аминокислотных последовательностях гомологичных белков из разных видов используют для построения эволюционных карт, отражающих последовательные этапы возникновения и развития различных видов животных и растений в процессе эволюции (рис. 6-14). [c.155]

    Был получен Pho мутант Е. oti (дефектный по щелочной фосфатазе), содержащий ат-мутацию гене Phok. Из этого мутанта был получен набор Pho ревертантов, у которых восстановленне активности щелочной фосфатазы не было связано с действием супрессоров. Анализ аминокислотной последовательности белка щелочной фосфатазы этих ревертантов показал, что они содержат различные аминокислотные замены, показанные на схеме в том месте полипептидной цепи, где в белке дикого-типа находится остаток триптофана. Для каждой аминокислоты указаны ее кодоны-синонимы подчеркнуты те из них, которые связаны с УАГ одиночной заменой основания. Очевидно, что УАГ является единственным триплетом, из которого в результате одиночных замен может возникнуть хотя бы по одному кодону для каждой из семи аминокислот, обнаруженных в ревертантах. [c.456]

    Физические и химические исследования бактериофага 2 показали, что его частица содержит одну одноцепочечную (некольцевую) молекулу РНК длиной около 3300 нуклеотидов. (Следовательно, РНК 2 несет примерно в два раза меньше генетической информации, чем РНК ВТМ.) Нуклеотидный состав РНК 12 следующий [А] = 0,23 [Г] = 0,26 [У] = = 0,26 и 1Ц] = 0,25. Белковая оболочка фага 2 представляет собой сферическую структуру из 180 одинаковых молекул белка, каждая из которых содержит 129 аминокислот. Анализ аминокислотной последовательности белка фага 12 и родственных ему фагов М52 (выделенного в Калифорнии) и 1г (выделенного в Германии) показал, что белок М52 отличается от белка 2.по 88.-й аминокислоте, белке фага 12 в этом мес е находится оста- [c.469]

    Следует особо отметить, что установление аминокислотной последовательности белка имеет очень важное практическое значение. Так, например, причину возникновения серповидно-клеточной у новорожденных детей удалось установить при анализе аминокислотной последовательности белка гемоглобина, содержащегося в эритроцитах крови больных. Оказалось, что аномальный гемоглобин больных (HbS), в отличие от нормального гемоглобина (НЬА) здоровых людей, в 6-м положении полипептидной цепи вместо глутаминовой кислоты содержит валин  [c.61]

    Данные о природе мутаций со сдвигом рамки получены при анализе аминокислотной последовательности белков, которые кодируются генами, содержащими взаимно супрессирующие мутации рамки (см. гл. 12). На рис. 20.9 сравнивается аминокислотная последовательность лизоци-ма фага Т4 дикого типа с соответствующими последовательностями белков фаговых мутантов, несущих две мутации со сдвигом рамки. С помощью таблиц генетического кода мы можем восстановить ве- [c.14]

    Выше мы предположили, что схема филогенеза нам была заранее известна (рис. 26.2). Однако на самом деле результаты исследований ДНК и белков можно использовать для реконструкции филогений в тех случаях, когда нет других источников информации или когда палеонтологические и иные данные допускают различное толкование. Поскольку между С и В намного меньше различий, чем между любым из этих видов и Е, можно предположить, что виды С и В возникли путем дивер-геш1ии позднее, чем вид Е. Таким образом, мы приходим к той же филогении, которая изображена на рис. 26.2. Реконструкция филогений не вполне надежна в тех случаях, когда она основана на результатах анализа аминокислотной последовательности какого-то одного белка или нуклеотидной последовательности ДНК, кодирующей этот белок, так ка,к в одних ветвях эволюции замены могли происходить чаще, чем в других, или в иное время. Однако данные, полученные при исследовании целого ряда белков у многих видов, обычно приводят к филоге ниям, хорошо соответствующим филогениям, реконструированным на основе морфологических и палеонтологических данных. [c.204]

    Электрофорез оказывается бесполезным при сравнении организмов, находящихся в очень отдаленном родстве. Они электрофоретически различаются по всем или по большинству локусов. Поскольку число аминокислотных замен нельзя установить с помощью электрофореза (устанавливаются лишь различия в электрофоретической подвижности белков), этот метод непригоден для того, чтобы оценить степень дифференциации между видами в случае, когда они различаются по всем или почти по всем локусам. С другой стороны, метод электрофореза имеет то преимущество, что при его использовании оценка расстояния производится по данным о многих локусах поэтому различия в скоростях эволюции в разных эволюционных линйях по одному локусу могут быть компенсированы различиями по другим локусам. В целом электрофорез-это удобный метод, позволяющий оценивать генетические изменения у близкородственных организмов, у которых анализ аминокислотных последовательностей какого-то одного белка может не выявить никаких различий или различия оказываются такими незначительными, что это приводит к ошибочным результатам. [c.231]

    Сайт мономера белка его, контактирующий с ДНК, образован последовательностью из 20 аминокислот, формирующих две а-спирали, которые разделены коротким витком. Такой фрагмент спираль-виток-спираль обнаружен и у ряда других бактериальных сайт-специфических ДНК-свя-зывйющих белков, трехмерные структуры которых известны (рис. 9-13). Более того, анализ аминокислотных последовательностей (обнаруженная при этом гомология) свидетельствует о том, что такой фрагмент присутствует и в составе других белков, участвующих в регуляции активности генов у бактерий, дрожжей и дрозофилы. [c.105]

    Молекула D4 - трансмембранный гликозилированный белок. Он находится на поверхности Т-лимфоцитов той субпопуляции, которая распознает клетки-мишени с антигенами, ассоциированными с белками МНС класса II [301-303]. Цитоплазматическая область D4 тесно контактирует с тирозинкиназой р56, играющей важную роль в запуске производства Т-клеток (рис. 1.10). Молекула D4 является основным рецептором, взаимодействующим с вирусом иммунодефицита человека (HIV-1) [304-307], о чем подробно говорится в следующем разделе. На основе данных анализа аминокислотных последовательностей D4 и иммуноглобулинов было предсказано, что внеклеточная часть рецептора состоит из четырех доменов, отнесенных к суперсемейству IgSP [304, 30S]. Предположение вскоре подтвердилось результатами прямых [c.72]

    Рассмотренные в этой главе исследования, по-видимому, не оставляют сомнений в том, что в 1990-е годы рентгеноструктурный анализ белков, по-прежнему сохраняя высокий темп экстенсивного развития, приступил к решению принципиально новых задач, представляющих первостепенный интерес для молекулярной биологии. Основная, если не единственная, причина наметившегося качественного изменения возможностей кристаллографии макромолекул связана с использованием синхротронной радиации. Переход к новому источнику рентгеновского излучения, во-первых, ослабляет требования, предъявляемые к размерам кристаллов, что особенно важно в структурном анализе высокомолекулярных белков и их комплексов, имеющих крупные элементарные ячейки. Во-вторых, сплошной спектр синхротронной радиации и легкость выбора любой длины волны монохроматического излучения дали возможность по-новому подойти к решению фазовой проблемы и разработать метод мультидлинноволновой аномальной дифракции, требующий для фазирования одного кристаллического образца. Существенным дополнением метода МАД стал способ рекомбинантного получения в ауксотрофных клетках белков, в аминокислотных последовательностях которых все остатки метионина заменены на селенометионин. Использование [Se-Met] белков не только освобождает рентгеноструктурный анализ от длительной рутинной процедуры приготовления нескольких изоморфных белковых производных тяжелых атомов, но практически снимает саму проблему изоморфизма. [c.163]

    Проявление регуляторных свойств авторы связывают с особенностями гидратации пептидов. Сочетание клатратных структур воды вокруг гидрофобных участков и гидратны) структур около полярных групп позволяет наглядно представить единство молекулярной динамики пептида и его водного окружения. Статистический анализ аминокислотных последовательностей низкомолекулярных пептидов и регуляторных белков обнаружил в их структуре повторяющиеся олигопептидные блоки. Гипотеза, предложенная авторами, состоит в том, что эти блоки составляют основу взаимной индукции регуляторной активности олигопепти-дов и высокомолекулярных белков. В монографии также рассматриваются особенности взаимодействия пептидов с элементами цитоплазматической клеточной мембраны рецепторами и фосфолипидными участками поверхности клетки. Вьщвинуто предположение о том, что не только белковые рецепторы, но и внешний слой мембраны, представляющий собой сложный орнамент положительно и отрицательно заряженных полярных групп фосфолипидов, может исполнять роль клеточного рецептора. Пептиды вследствие своей по-лиамфолитной природы комплементарно взаимодействуют [c.5]

    Сравнение многочисленных структур белков, выделенных из разных источников, позволило обнаружить общие признаки у белков, выполняющих одинаковые или близкие функции — в их структурах сохраняются консервативные участки полипептидной цепи. Эти островки постоянства в море мутационных вариаций чаше всего называют мотивами, иногда блоками или сегментами. В настоящее время анализ аминокислотной последовательности применяется для классификации и оценки принадлежности белка к тому или иному семейству (Р1е1гокоУ5к1 е1 а1., 1996). На протяжении всей макромолекулярной цепи, как правило, находятся не один, а несколько мотивов, характерных именно для определенного семейства белков. Обычно эти участки состоят из 10—15 аминокислотных остатков, но встречаются и более короткие. Например, центр фосфорилирования протеинки-наз С имеет последовательность (Ва1госЬ е1 а1., 1996)  [c.76]

    Поскольку для сборки фибрилл из молекул коллагена in vitro не нужны никакие другие белки, вся необходимая для этого процесса информация должна содержаться в аминокислотной последовательности а-цепей. В то время как остатки пролина, гидроксипролина и глицина ответственны в основном за образование тройной спирали, боковые цепи остальных аминокислот нужны, как полагают, главным образом для построения фибрилл. В самом деле, анализ аминокислотных последовательностей а-цепей с помощью ЭВМ показал, что 1) заряженные и незаряженные остатки группируются вдоль цепи с периодом около 67 нм (что соответствует примерно 234 аминокислотным остаткам) 2) наибольшее число электростатических и водородных связей между двумя а-цепями может образоваться при относительных сдвигах, кратных 67 нм (рис. 12-47). [c.227]

    При анализе аминокислотных последовательностей целесообразно использовать несколько иной фильтр, а именно точка ставится, если в окне длиной W суммарный уровень сходства аминокислот не менее заданного. Дайхофф (Dayhoff, 1972) провела детальный анализ частот аминокислотных замен в гомологичных семействах белков. В табл. 1.1 приведены полученные веса аминокислотных замен. При подсчете суммарного уровня сходства в окне суммируют числа, соответствующие аминокислотам в сравниваемых [c.15]

    Принцип ТФ-анализа аминокислотной последовательности заключается в ковалентном связывании пептида с нерастворимым носителем и последующим отщеплении (при помощи ФИТЦ) аминокислот от пептида, связанного с носителем. Разработан набор методов присоединения пептидов и белков к носителям, применяемым в виде шариков (производные полистирола или стекла, содержащие различные функциональные группы [33]). Носитель с ковалентно присоединенным пептидом (пептидил-носитель) можно упаковать в колонку и тщательно промыть реагентами и растворителями, используемыми в процессе анализа (при этом в отличие от ЖФ-метода нет опасности вымывания образца). После проведения полного цикла отщепления анилинотиазолинон АТЗ-аминокислоты вымывают из колонки, а пептид, укороченный на одну аминокислоту, остается присоединенным к носителю и доступным для проведения следующего цикла реакций. [c.375]

    В этой главе рассматриваются некоторые методики, используемые в настоящее время в автоматическом ЖФ-анализе аминокислотной последовательности пептидов и белков. Рассматриваются правила эксплуатации прибора, методы подготовки образца и способы контроля состояния прибора. Помимо этого, обсуждаются вопросы использования 1юсителей и основные проблемы автоматического определения последовательности. Опубликованы обширные обзоры по каждому из упомянутых вопросов [10, 14, 16]. [c.425]


Смотреть страницы где упоминается термин Белки анализ аминокислотной последовательности: [c.292]    [c.208]    [c.209]    [c.261]    [c.208]    [c.209]    [c.34]    [c.365]    [c.82]    [c.292]    [c.77]    [c.374]   
Аминокислоты Пептиды Белки (1985) -- [ c.367 ]




ПОИСК





Смотрите так же термины и статьи:

Аминокислотные белках

Аминокислотные последовательности



© 2025 chem21.info Реклама на сайте