Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Уравнение приращения функционала

    Действительно, легко проверить, что приращение А Р по членам второго порядка содержит положительно. определенную квадратичную часть, зависящую от диссипации, а линейные члены взаимно уничтожаются, как в приведенных примерах. Следовательно, функционал Г, заданный уравнением (10.86), пригоден в качестве локального потенциала для уравнения (10.80). С помощью элементарных преобразований можно показать, что в пределе малых градиентов и внешних сил, т. е. когда система близка к равновесию, Ф становится функционалом от одной функции и сводится к лагранжиану для линейной области необратимых процессов (см. также разд. 10.2). Такие лагранжианы тесно связаны с производством энтропии, выраженным здесь через функцию распределения, а не через термодинамические средние [131]. Однако в общем случае из уравнения (10.86) все же можно получить обобщенный вариационный принцип, пригодный для определения функции распределения в нелинейной области, что соответствует первому приближению Чепмена — Энскога (см. работу [30]). [c.148]


    Действительно, легко убедиться в том, что уравнения баланса для приращений (12.3) и (12.4) являются уравнениями Эйлера — Лагранжа для функционала (12.15), если при этом использовать дополнительные условия, зависящие от времени (разд. 10.9), [c.180]

    Аналогичным образом могут быть получены постановки сопряженных краевых задач и формулы для градиентов невязки применительно к другим экстремальным постановкам обратных задач. Для этого, следуя известной процедуре решения задач на условный экстремум, составляется расширенный функционал, учитывающий невязку и (с помощью неопределенных множителей Лагранжа) условия математической модели в виде дифференциальных уравнений, начальных и граничных условий, условий сопряжения. Для расширенного функционала вычисляется главная линейная часть приращения, отвечающая вариациям исходных величин и, соответственно, вариациям переменных состояния. Полученная вариация функционала преобразуется с помощью операции, интегрирования по частям, а для многомерных областей с использова нием формулы Остроградского-Гаусса таким образом, чтобы выражения под знаками интегралов по областям задания уравнений не содержали частных производных от приращений переменных состояния. Затем, согласно необходимому условию стационарности расширенного функционала, его вариация приравнивается нулю. Учитывая произвольный характер приращений переменных состояния, приравниваются нулю коэффициенты при соответствующих приращениях. Получившиеся равенства представляют собой условия для определения множителей Лагранжа, которыми в зависимости от учитываемого условия математической модели могут быть функции и константы. Совокупность этих равенств и дает искомую постановку сопряженной краевой задачи. [c.188]


Методы оптимизации сложных химико-технологических схем (1970) -- [ c.260 ]




ПОИСК







© 2025 chem21.info Реклама на сайте