Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции с нуклеофильными реагентами (см. также разд

    Анионы нитрометана и его гомологов легко присоединяются к карбонильным и ненасыщенным карбонильным соединениям, а также к азометинам (разд. В.1 и В.2). Эти реакции дополняет присоединение нуклеофильных реагентов к а-нитроолефинам, обсуждаемое в разд. В.2. Интересно отметить, что в литературе отсутствуют замечания о конденсации нитроалканов со сложными эфирами по ме- [c.495]

    Известно (разд. 5.13 и 8.12), что алкилгалогениды вступают не только в реакции замещения, но также и реакции элиминирования — реакции, которые важны для синтеза алкенов. И элиминирование, и замещение протекают под действием основных реагентов, и, следовательно, между ними возможна конкуренция. Интересно выяснить, как различные факторы, такие, как строение галогенида и природа используемого нуклеофильного реагента, влияют на направление реакции. [c.447]


    РЕАКЦИИ С НУКЛЕОФИЛЬНЫМИ РЕАГЕНТАМИ (СМ. ТАКЖЕ РАЗД. 17.14.4) [c.429]

    При реакциях, в основе которых лежат диполь-дипольные взаимодействия, электрофильные участники реакции играют роль кислот Льюиса, нуклеофильные — роль оснований Льюиса. Их реакционноспособность часто изменяется параллельно кислотности и основности по Льюису. В качестве характеристики нуклеофильной реакционной способности (нуклеофильности) реагентов используют константы скорости их реакций с определенным электрофильным субстратом. Аналогично для характеристики электрофильности служат константы скорости реакций электрофильных реагентов с определенным нуклеофилом. Таким образом, в основе определения нуклеофильности и электрофильности лежит кинетика в отличие от кислотности и основности. При этом речь идет об относительных величинах, зависящих от партнера и реакционной среды. Поэтому по отношению к разным электрофильным (нуклеофильным) партнерам, а также разным растворителям обычно устанавливаются различные ряды нуклеофильности (электрофильности) реагентов. Об этом см. также в разд. Г,2.2 (нуклеофильное замещение). [c.209]

    Многие типы литийорганических соединений RLi, методы получения которых рассматривались в разд. 15.1.1.2, могут служить в качестве реагентов для введения группы К в ходе нуклеофильных реакций. При этом группа R может служить синтоном для различных функциональных групп п структурных единиц. Так, например, 2-литий-1,3-дитианы (4) можно рассматривать в качестве нуклеофильных ацилирующих агентов (схема 12). Многочисленные примеры подобного применения литийорганических соединений могут быть найдены в других томах настоящего издания, а также в обзоре [10]. [c.16]

    В результате замещения также получают в зависимости ог типа реакции разные конечные продукты, если протекают К(я1(у-рентиые реакции различных нуклеофильных реагентов или с. щ этн реагенты бифуикцноиальны. Этот вопрос более подробно 1С-смотрен в разд. Г,2.3. [c.242]

    В разд. 14.22 было показано, что алкилгалогениды удобно определять по осаждению нерастворимых галогенидов серебра, получаемых при нагревании их со спиртовым раствором нитрата серебра. Реакция происходит почти мгновенно с третичными бромидами, а также с аллил- и бензилбромидами и требует некоторого времени (порядка 5 мин) в случае первичных и вторичных бромидов. В противоположность этому соединения, содержащие галоген, связанный непосредственно с ароматическим ядром или с атомом углерода при двойной связи, не образуют галогенидов серебра в этих условиях. Бромбензол или бромистый винил можно нагревать со спиртовым раствором AgNOз в течение нескольких дней, но при этом не удается обнаружить даже малейших следов АбВг. Аналогично не удаются попытки превратить арил- или винилгалогениды в фенолы (или спирты), простые эфиры, амины или нитрилы действием обычных нуклеофильных реагентов арил- и винил- [c.786]


    Учитывая, что сольватация амбидентных анионов в активированных комплексах может существенно отличаться от сольватации свободных анионов, более убедительным представляется другое объяснение влияния растворителей на направленность реакции, основанное на концепции жестких и мягких кислот и оснований (ЖМКО) [275] (см. также разд. 3.3.2) [366]. В амбидентных анионах менее электроотрицательный и более поляризуемый электронодонорный атом обычно является более мягким основанием, в то время как более электроотрицательный атом проявляет свойства жесткого основания Льюиса. Так, в енолят-анионах атомы кислорода и углерода являются жесткими и мягкими основаниями соответственно, в тиоцианат-анионе атомы азота и серы обладают свойствами жесткого и мягкого оснований соответственно и т. д. Направление реакции можно предугадать, если учесть мягкость (или жесткость) электрофильного агента. В протонных растворителях два нуклеофильных центра амбидеитного аниона должны реагировать с двумя электрофильными агентами — протонным растворителем и реагентом КХ, причем протонный растворитель является жесткой кислотой, а КХ — мягкой. Следовательно, в протонных средах [c.345]

    Для введения сульфонильной группы в качестве нуклеофильного реагента часто используют сульфиновую кислоту. В случае обычных алкилирующих агентов эта реакция служит удобным методом синтеза сульфонов [17], но она может происходить и путем атаки по атому кислорода, выступающему в качестве нуклеофильного центра вместо атома серы [18]. Сульфоны образуются также при сольволизе эфиров сульфиновых кислот при этом в качестве интермедиатов возникают карбениевые и сульфинат-ионы. Детальное исследование этой реакции обусловлено ее значением для изучения механизма (см. разд. 11.18.4.3), [c.495]

    Литийарины КИб R = Li) селективно подвергаются атаке нуклеофила в орго-положение с образованием соединения (М7) [337J, Ориентация нуклеофильного присоединения к ари-ну зависит также от нуклеофильности реагента и стерических эффектов. Как и в других реакциях, чем активнее нуклеофил, тем "меньше избирательность его атаки. Стерические затруднения возникают из-за наличия заместителя в орто- или пери-, поло кении к тройной связи и проявляются тем сильнее, чем больше объем вступающего нуклеофила. Так, в 1,2-дегидронафталине атака в положение 1 затруднена наличием в пери-поло жении атома водорода, отчего при взаимодействии с объеми- стыми аминами, например диизопропиламином, остаток амина присоединяется только в положение 2. (Примеры нуклеофильного замещения но аринному механизму см. в разд. 8.1.1, [c.115]

    Во-вторых, против четырехцентрового механизма свидетельствует то, что реакция присоединения, проводимая в присутствии реагентов, действие которых связано с предоставлением пары электронов нуклеофильные реагенты, разд. 7-1), часто приводит к образованию смесей продуктов. Так, присоединение брома к алкену в растворе в метиловом спирте, содержащем хлористый литий, дает не только ожидаемый дибромалкан, но также продукты, образующиеся при атаке хлорид-ионов и растворителя. Такое участие нуклеофильных агентов, действующих извне , в образовании продук- [c.202]

    Последняя реакция сходна с реакцией Михаэля — присоединением нуклеофильных реагентов к двойным углерод-углеродным связям О, разд. 16-10,В) для осуществления обеих этих реакций необходимо, чтобы при двойной связи находились электроноакцепторные заместители. Образуется 2-цианэтилфосфин, который также может присоединяться к акрилонитрилу [c.620]

    Как видно из схем (Г.8.14) и (Г.8.31), алифатические диазосоединения являются биполярными. Углеродный атом, соседний с диазогруппой, цредставляет собой нуклеофильный центр, способный подвергаться атаке электрофильными реагентами (например, протонами, карбонильными соединениями). Эти реакции рассматриваются в следующих разделах. Кроме того, диазоалканы вступают в реакции [1,3]-циклоприсоединения с олефинами и ацетиленами (см. разд. Г,4.4.2). Образующиеся из олефинов А -пиразолины легко изомеризуются в Д -пиразоли-ны, а при нагревании отщепляют азот и превращаются в производные циклопропана. (Напишите уравнения этих реакций ) Сами диазоалканы также могут отщеплять N2 при пиролизе, облучении УФ-светом или под влиянием катализаторов (ионов меди или серебра см. также разложение а-диазокетонов, разд. Г,9.1.1.3). Реакции образующихся при этом карбенов обсуждены в разд. Г,3.3 и Г,4.4.1. [c.286]

    Для эфиров сульфиновых кислот наиболее характерна реакция нуклеофильного замещения у атома серы с последующим расщеплением связи сера—кислород [37]. По такому пути проходят реакции сульфинатов с различными нуклеофильными реагентами, у которых нуклеофильный центр находится у атомов углерода, кислорода или азота. Некоторые исключения из этой закономерности рассмотрены ннже. В реакции оптически активных сульфинатов с реактивами Гриньяра получаются сульфоксиды с высокой оптической чистотой и обращенной конфигурацией [39—41]. Аналогично реагируют литийорганические и цинкорганические реагенты [41]. Натриевое производное ацетона присоединяется к метил-л-толуолсульфинату (уравнение 30) [53], а р-дисульфоксиды образуются в реакции, приведенной в уравнении 31 [54. С обращением конфигурации проходит также пере-.этерификация эфиров сульфиновых кислот [37]. Гидролиз метил-п-толуолсульфината под действием кислот происходит с разрывом связи сера—кислород аналогично гидролизуются сульфинаты под действием оснований [37, 55]. При действии литийанилида на ментил- -толуолсульфинат происходит вытеснение меитокси-иона с обращением конфигурации и получается л-толуолсульфин-анилид (см. разд. 11.18.5) [37]. [c.501]


    Гидроксил или алкоксигруппу невозможно отщепить в виде аниона НО или ROQ по S l- или S]sr2-MexaHH3My, поскольку нуклеофильность этих групп очень велика (см. разд. 4.9.2) вследствие этого обратная реакция присоединения на много порядков предпочтительнее. Поэтому спирты удается превратить в сложные эфиры неорганических кислот лишь в кислой среде, а простые эфиры также расщепляются лишь в кислой среде. В результате равновесного взаимодействия с кислотой Бренстеда или Льюиса предварительно образуется оксониевый ион, заряженная группа которого имеет повышенную тенденцию к отщеплению при соответствующих условиях она может в результате мономолекулярной реакции образовать карбкатион (путь Sn1/A1). Но во многих случаях сила оттягивания электронов недостаточна и реакция нуждается в содействии нуклеофильного реагента путь [c.202]

    Дисульфидные связи расщепляют путем окисления, восстановления, с ПОМОЩЬЮ реакций нуклеофильного замещения (НЗОз , ВН4 , Н ) [40, 106] (см. также гл. 2). При окислении 5—5-связей образуются два остатка цистеиновой кислоты [160]. Дополнительные сульфогруппы придают молекуле белка заметную гидрофильность, повышая его растворимость в воде, в особенности в области низких pH. Однако окисление дисуль-фидных связей сопровождается модификацией других аминокислот и частичным гидролизом лабильных пептидных связей. Поэтому для введения сульфогруппы предпочитают проводить восстановительное расщепление дисульфидных связей, а затем мягкое окисление 5Н-групп реагентами ряда сультопов (внутренних сложных эфиров сульфокислот) (см. разд. 1.5.1.2 и [c.64]

    Точно так же, как можно связать изотопные эффекты в нуклеофильной способности реагента с эффектами, наблюдаемыми в основных свойствах, так и изотопные эффекты в реакциях отщепления протона могут быть связаны с влиянием их на кислотные свойства. Можно было бы ожидать, что введение дейтерия в молекулу будет обычно уменьшать скорость отщепления протона от соседнего атома углерода. Такое замедление реакции можно было бы объяснить главным образом индуктивным эффектом дейтерия. Отщепление протона от атома углерода, если за этим не следуют другие процессы, должно приводить к образованию карбаниона или аналогичной ненасыщенной системы. Этот карбанион может участвовать в гиперконъюгации с соседними метильными или метиленовыми группами. Как отмечалось в разд. IIIB, 3, б, гиперконъюгационный изотопный эффект должен усиливать эффект, обусловленный индуктивным влиянием. В то же время при диссоциации карбоновых кислот гиперконъюгация с карбоксильной СО-группой и индуктивный эффект сказываются на величине изотопного эффекта противоположным образом (разд. IVA, 3). В данном разделе не проводится никаких широких количественных сравнений между изотопными эффектами в реакциях отщепления протона и эффектами, наблюдаемыми в кислотных свойствах. Это связано с отсутствием в настоящее время достаточных данных и, кроме того, с тем, что эффекты в кислотных свойствах, по-видимому, зависят также от характера растворителя. [c.160]

    Вода и другие оксисоединения, такие, как алканолы и фенолы, реагируют с хлорангидридами, ангидридами и кислотами, причем легкость реакг ции очень сильно зависит от природы обоих реагентов. В случае простейших хлорангидридов катализатор не требуется, но он необходим для других классов карбонильных соединений. Это относится, в частности, к сложным эфирам, которые гидролизуются до кислот водой в присутствии минеральных кислот (в присутствии щелочей при гидролизе образуются карбоксилат-анионы). Сложные эфиры также способны превращаться в другие сложные эфиры по реакции переэтерификации под действием алканолов в присутствии кислот, но с фенолами, гидроксильная группа которых гораздо менее нуклеофильна, чем гидроксильная группа алканолов, они почти не реагируют. Амиды реагируют с водой в условиях кислого или основного гидролиза. Bo всех этих реакциях образуется в основном кислота, если нуклеофилом служит вода (или анион кислоты, если реакция проводится в щелочных условиях), или сложный эфир, если нуклеофилом является алканол или фенол (см. гл. 14, разд. 3, А, реакция 3). Если в качестве хлорангидрида используется бензоил-хлорид, то примером реакции этерификации является реакция Шоттен — Баумана, при которой легко замещаемый атом водорода (в данном случае атом ОН-группы, но то же самое возможно для амино- и других групп) замещается бензоильным радикалом. Единственной причиной, по которой эта реакция рассматривается отдельно от других методов проведения реакции ацилирования, является то, что реакция проводится в присутствии водного раствора щелочи, нейтрализующего образующийся НС1 это существен- [c.399]


Смотреть страницы где упоминается термин Реакции с нуклеофильными реагентами (см. также разд: [c.283]    [c.422]    [c.522]    [c.501]    [c.70]    [c.332]    [c.61]    [c.193]   
Смотреть главы в:

Химия гетероциклических соединений -> Реакции с нуклеофильными реагентами (см. также разд




ПОИСК





Смотрите так же термины и статьи:

Нуклеофильный реагент

Реагенты нуклеофильные Нуклеофильные реагенты

Реакция нуклеофильного



© 2025 chem21.info Реклама на сайте