Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Квантово-статистическая сумм поступательного движения

    Основное уравнение статистической термодинамики f=i/o— -кТ1п2 позволяет выразить все термодинамические функции через величины, характеризующие свойства молекул, т. е. позволяет связать термодинамические функции с определенной молекулярной моделью системы. Это крупный научный результат, особенно важный для химии. На всех уровнях развития естествознания химики стремились решить вопрос о том, как наблюдаемая на опыте способность вещества вступать в различные реакции связана со строением частиц, из которых это вещество состоит. В 1901 г. Гиббс получил в общем виде написанное выше соотношение и нашел общие выражения для и, Н, О, Су, Ср и т. п. через суммы по состояниям. Однако при этом он совсем не рассматривал другую сторону вопроса — как вычислить саму величину 2 для реальной системы. Для этого в то время механика молекул располагала возможностью подсчитать только вклад, связанный с поступательным движением частиц. Кроме того, поскольку вычисление Р, О и 5 требует операций с абсолютной величиной 2, без применения квантовой механики такой расчет вообще нельзя было завершить, так как для этого необходймо использовать постоянную Планка к. Поэтому статистические расчеты термодинамических величин были начаты фактически только в двадцатые — тридцатые годы и продолжаются до настоящего времени. Расчет сумм по состояниям 2 для реальных систем — достаточно сложная и далеко не решенная задача. Однако принципиальная ясность здесь есть, и существо дела сейчас хорошо разобрано на многих примерах. Простейший из них — свойства многоатомного идеального газа со многими независимыми степенями свободы. [c.215]


    Как указано выше, в теории РРКМ используется равновесное отношение концентраций А+ и А. Оно рассчитывается по статистической механике как отношение статистических сумм активированного комплекса и активной молекулы Q(A )/Q(A ) с энергиями, отсчитываемыми от общего уровня, соответствующего энергии молекулы А. Поскольку обе рассматриваемые системы имеют полную энергию в малом интервале Е - Е +8Е, каждая статистическая сумма записывается в виде (2g-,) ехр (—Е кТ), где Sg,— число квантовых состояний в этом малом интервале энергий, и Q(A+)/ /Q(A ) сводится просто к 2gff/2g, Xoтя А иА имеют одинаковую полную энергию, текущая энергия А+ гораздо меньше. Соответственно в данном интервале энергий содержится намного меньшее число квантовых состояний А" и [А+]/[А ] будет мало, что физически оправданно. Как и выше (разд. 4.4), Ugl можно заменить на непрерывную функцию распределения N E )bE, и для активированного комплекса на этой стадии будет справедливо аналогичное рассмотрение, так как он содержит поступательную степень свободы (координату реакции). Расстояния между энергетическими уровнями поступательного движения обычно крайне малы (приложение П, разд. П. 2), и с хорошей точностью энергию можно считать не квантованной, а непрерывной. Число квантовых состояний активированного комплекса в интервале полной энергии Е Е + +б можно было бы обозначить как N (Е )8Е, однако больше принято обозначение N (E )8E или N E )8E+, поскольку по Е и б можно определить +(== —Е ) и 8Е (=8Е ), а последние величины более существенны для поведения комплекса. Легче представить себе комплекс с текущей энергией , чем комплекс, образованный из активной молекулы с текущей энергией . Та (им образом, отношение концентраций для рассматриваемого малого интервала энергий сводится к [c.80]


Лекции по общему курсу химии ( том 1 ) (1962) -- [ c.259 ]

Лекции по общему курсу химии Том 1 (1962) -- [ c.259 ]




ПОИСК





Смотрите так же термины и статьи:

Движение поступательное

Статистическая поступательного движения

Статистический поступательная

Статистический сумма

Сумма статистическая поступательная



© 2024 chem21.info Реклама на сайте