Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Объемный коэффициент полезного

    Наконец, к числу достоинств многоступенчатых компрессоров нужно отнести высокий объемный коэффициент полезного действия, обусловленный более низкими степенями сжатия газа в отдельных ступенях. [c.144]

    Идеальная холодильная машина, как видно из рис. XVI-I, предполагает всасывание компрессором влажного пара и его сжатие в области X < I, где х — паросодержание. Очевидно, даже при достижении в конце сжатия состояния сухого насыщенного пара (х = I), т. е. в предельном варианте реализации обратного цикла Карно, компрессор будет все же всасывать влажные пары хладоагента. Такой процесс, однако, практически невыгоден, так как в результате соприкосновения с нагретыми стенками цилиндра компрессора частицы жидкости будут здесь испаряться без увеличения холодопроизводительности машины при одновременном уменьшении объемного коэффициента полезного действия компрессора. По этой причине компрессор действительной холодильной машины всасывает сухой насыщенный пар, осуществляя его сжатие в перегретой области (адиабата I—2 на рис. XVI-2, б), что составляет третье отличие от идеального рабочего цикла. Заметим, что сжатие паров в перегретой области является термодинамически невыгодным, поскольку на участке 2—3 или /О—// количество холода, приходящееся на единицу затрачиваемой работы, меньше, чем в области влажного пара. Однако небольшой перерасход работы практически перекрывается тем, что вся скрытая теплота хладоагента используется только в испарителе, и производительность компрессора увеличивается за счет возрастания объемного коэффициента полезного действия компрессора. [c.731]


    Двухступенчатые и трехступенчатые машины. В некоторых технологических процессах требуются более низкие температуры, чем те, для получения которых могут быть эффективно использованы одноступенчатые компрессионные холодильные машины. Для аммиака, например, при давлении 1 ат температура кипения о = —34° С. Если необходимо иметь более низкую температуру испарения, одноступенчатая холодильная машина может оказаться либо малоэкономичной, либо совсем непригодной, так как увеличение разности температур конденсации и испарения (I— ) приводит к возрастанию степени сжатия и соответственно — к снижению объемного коэффициента полезного действия компрессора. Кроме того, увеличение степени сжатия паров хладоагента повышает их температуру и может даже вызвать разложение паров. [c.658]

    В двухступенчатой холодильной машине степени сжатия в цилиндрах низкого и высокого давления значительно ниже, чем в одноступенчатой, поэтому объемный коэффициент полезного действия компрессора соответственно выше. [c.659]

    Исследования, проведенные с насосами, установленными в авиационных гидравлических системах, показали, что их объемный коэффициент полезного действия наиболее снижается при наличии в рабочей жидкости [c.84]

    Что называется объемным коэффициентом полезного действия  [c.16]

    Развитие аппаратов для массообмена характеризуется стремлением к увеличению объемного коэффициента полезного действия контактирующих устройств. Стремление увеличить производительность оборудования при одновременном сокращении капитальных затрат и эксплуатационных расходов привело к разработке большого числа новых контактирующих устройств и к замене старых, классических (например, насадочных и колпачковых) новыми, более совершенными контактирующими устройствами. [c.130]

    Выражения (5.43) и (5.44) показывают, что для данного поршневого насоса при постоянном числе п оборотов в минуту подача Q является постоянной величиной, не зависящей от преодолеваемого насосом дифференциального (полного) напора Я, если не считать некоторого уменьшения объемного коэффициента полезного действия т)о насоса за счет увеличения утечек при повышении напора. Таким образом, напор Я развиваемый насосом, практически почти не зависит от числа оборотов п, а следовательно, и от подачи Q. [c.157]

    Несколько более экономичным является регулирование производительности компрессора путем частичного перекрывания (дросселирования) всасывающего газопровода. При этом вследствие роста гидравлического сопротивления давление всасывания падает до р[, но сохраняется давление нагнетания р (рис. 1П-6, а). Массовая производительность компрессора будет уменьшаться соответственно падению давления Рх (возрастанию удельного объема газа) и объемного коэффициента полезного действия (из-за роста степени сжатия р /рх). Разумеется, в результате роста отношения р р[ будет увеличиваться расход энергии на сжатие I кг газа. В случае многоступенчатого сжатия давления газа между ступенями уменьшатся, но останется неизменным давление в последней ступени, так как оно зависит от давления в нагнетательном газопроводе. При этом степень сжатия останется та же, что и прн нормальном режиме, во всех ступенях, кроме последней, где она возрастет примерно обратно пропорционально уменьшению производительности. В связи с этим диапазон регулирования, как и в предыдущем случае, ограничивается предельно допустимой температурой сжатого газа. Необходимо помнить, что рассматриваемый способ регулирования сопряжен с образованием вакуума иа всасывающей стороне компрессора и, следовательно, с возможностью подсоса атмосферного воздуха, опасного в случае сжатия газов, образующих взрывчатые смеси с кислородом воздуха. [c.146]


    Здесь г—число зубьев у каждой шестерни п — частота вращения шестерен, об/мин г](, = 0,75—0,85 — объемный коэффициент полезного действия, учитывающий внутреннюю утечку жидкости из области нагнетания через зазоры между зубчатками н кожухом,- а также некоторую разность объемов впадины и зуба. [c.129]

    Из выражения (П1.5) следует, что объемный коэффициент полезного действия компрессора падает с увеличением объема вредного пространства и с ростом степени сжатия pjpi- По этой причине стремятся при проектировании компрессоров к возможному уменьшению величины е на практике е,, = 0,03—0,08. В зависимости от интенсивности охлаждения цилиндра (особенно его крышки) т = 1,2—1,35. Заметим, что работа расширения остатка газа незначительно превышает работу его сжатия, поэтому влиянием объема вредного пространства на расход энергии для сжатии газов в компрессорах обычно пренебрегают. Наконец, высокие степени сжатия газа влекут за собой не только падение но сопряжены с повышением температуры газа и ухудшением условий смазки рабочей поверхности цилиндра, а также, как [c.139]

    Теоретическая производительность компрессора Кт м /с может быть приближенно найдена исходя из того, что через наибольшее свободное сечение между ротором н корпусом, равное 2е/, газ проходит со скоростью движения пластины nDn/60, поэтому Кт = 2е/ (яОл/бО), гдее — эксцентриситет I — длина пластины D — внутренний диаметр корпуса п — число оборотов ротора в минуту. Для определения действительной производительности V м /с нужно учесть объемный коэффициент полезного действия т)о, а также уменьшение рабочего объема на [c.160]

    Степень сжатия газа, зависящая от отношения объемов полости А в начале и конце процесса, достигает в современных машинах 12—15 производительность машины превышает 8 м /с. Частота вращения роторов находится в пределах 1000— 10 ООО об/мин окружные скорости превышают 150 м/с, благодаря чему винтовые компрессоры весьма компактны. Объемный коэффициент полезного действия компрессора слабо зависит от степени сжатия газа, возрастая с увеличением числа оборотов [c.162]

    Двухступенчатая машина. Степень сжатия паров хладоагента ра/рх, как уже известно, определяется температурами конденсации и испарения. Ранее (см. главу III) было показано, что при Рг/Рх > 4—5 одноступенчатое сжатие газов (паров) приводит к снижению объемного коэффициента полезного действия компрессора и повышению расхода энергии. Для устранения этих недостатков при > 4—5 применяют многоступенчатые компрессоры с охлаждением сжимаемого газа между ступенями. [c.732]

    Наличие вредного пространства, конструктивно неизбежного, является причиной, по которой поршневой вакуум-насос не только не может создать абсолютного вакуума, но имеет теоретический предел этой величины, который соответствует определенному остаточному давлению рпр. Легко видеть, что величина рар при отсутствии перепуска больше, чем при его наличии рпр. В самом деле, вакуум-насос будет всасывать газ до достижения предельной степени сжатия, когда объемный коэффициент полезного действия достигнет нуля. Для обоих вариантов работы вакуум-насоса (без перепуска и с перепуском) согласно выражению (П1.5) получим  [c.170]

    Главным недостатком пластинчатых вакуум-насосов является падение их объемного коэффициента полезного действия прн небольшом износе пластин [c.172]

    Отношение объема газа V, засасываемого компрессором, к объему VI, засасываемому поршнем, называется объемным коэффициентом полезного действия компрессора. Эта величина зависит от величины [c.59]

    Увеличение числа пластин в роторе уменьшает чувствительность машины к износу пластин и, следовательно, также падение объемного коэффициента полезного действия. Одновременно несколько усложняется конструкция вакуум-насоса и возрастает объем вредного пространства. Для устранения последнего недостатка прибегают, как н в поршневых вакуум-насосах, к перепуску газа, осуществляемому посредством канала, сообщающего вредное пространство с камерой наименьшего давления (рис. 111-20, в). [c.172]

    Ео — объемный коэффициент полезного действия  [c.9]

    Объемный коэффициент полезного действия для современных насосов составляет т] = 0,9 0,98. [c.147]

    Из выражения (III.5) следует, что объемный коэффициент полезного действия одноступенчатого компрессора "ко падает с увеличением степени сжатия газа рг ру и относительного объема вредного пространства бд. Легко видеть, что при некоторых значениях и р 1р. величина может обратиться в нуль, т. е. весь ход всасывания будет потрачен на расширение объема сжатого газа, вмещаемого вредным пространством поступление свежих порций газа в цилиндр и подача сжатого газа в нагнетательный газопровод прекратятся (кривые сжатия газа и расширения остатка на рис. П1-3 совпадут). Полагая К = 0. можно при заданных значениях определить теоретически достижимые предельные степени сжатия газа (Р2/Я1)прсд- Так, при — 0,05 и т = 1,4 получаем (р2/Р1)гфед = 28,7, т. е. газ может быть сжат от 0,1 до 2,9 МПа. Однако, помимо потери производительности и далеко недостаточной степени сжатия для ряда химических производств, температура сжатого газа была бы в данном случае недопустимо высокой — около 490 °С. Воздух, имея начальную [c.140]


    Чтобы оценить часть непроизводительно затрачиваемой по этой причине работы, определяют отношение Q/Qo и называют его объемным коэффициентом полезного действия насоса  [c.185]

    Расчетная, или теоретическая, производительность насоса всегда уменьшается за счет всякого рода потерь. Поэтому отношение действительной производительности насоса к теоретической, или объемный коэффициент полезного действия, может характеризовать качество насоса. [c.100]

    Ло — объемный коэффициент полезного действия (иначе — коэффициент подачи, коэффициент наполнения) насоса, определяется утечкой жидкости через сальники, зазоры в клапанах и т. д. [c.157]

    На рис. III-5, а приведена теоретическая р—у-диаграмма трехступёнчатого компрессора. Здесь точки В, D н(3 соответствуют состояниям газа на выходе из ступеней I, II и III, а точки С н Е — состояниям входа в ступени II и III, характеризующимся уменьшением удельных объемов (от до Vi и от Уа до Уз) вследствие охлаждения газа в промежуточных холодильниках 2 и 5. Из рис. III-5, а видно, что при многоступенчатом сжатии достигаются не только приемлемые объемные коэффициенты полезного действия компрессора и допустимые рабочие температуры, но также существенное уменьшение расхода работы. В самом деле, при сжатии газа в одной ступени (без промежуточного охлаждения) [c.141]


Смотреть страницы где упоминается термин Объемный коэффициент полезного: [c.157]    [c.657]    [c.157]    [c.130]    [c.139]    [c.141]    [c.160]    [c.170]    [c.170]    [c.172]    [c.57]    [c.153]    [c.657]    [c.783]    [c.184]    [c.182]    [c.319]    [c.229]   
Введение в теорию и расчеты химических и нефтехимических реакторов (1968) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Вредное пространство и объемный коэффициент полезного действия

Высота всасывании. Воздушные колпаки. Мощность и коэффициент полезного действия насоса Конструкция объемных насосов

Коэффициент полезного действия объемный

Объемный коэффициент полезного действия реакторов

Реакторы периодического действия объемный коэффициент полезного

Степень превращения и объемный коэффициент полезного действия



© 2025 chem21.info Реклама на сайте