Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вакуум

Рис. 14- Схема барабанного вакуум-фильтра. Рис. 14- <a href="/info/916464">Схема барабанного</a> вакуум-фильтра.

Рис. 5. Насосное устройство конструкции Ньюкомена, работавшее при атмосферном давлении. Впрыснутая в цилиндр вода вызывает конденсацию пара, в цилиндре создается вакуум, и поршень опускается вниз. Новая порция пара, поступающая в цилиндр из парового котла, возвращает поршень в исходное положение. Рис. 5. Насосное устройство конструкции Ньюкомена, работавшее при <a href="/info/17581">атмосферном давлении</a>. Впрыснутая в цилиндр вода вызывает <a href="/info/199312">конденсацию пара</a>, в цилиндре создается вакуум, и поршень опускается вниз. Новая порция пара, поступающая в цилиндр из <a href="/info/69639">парового котла</a>, возвращает поршень в исходное положение.
    Древние греки не могли представить себе возможность существования вакуума (полной пустоты) и поэтому не верили в то, что между подвешенной Землей и далеким небом есть пустое простран- [c.14]

    В 1855 г. немецкий стеклодув Генрих Гейслер (1814—1879) изготовил стеклянные сосуды особой формы и вакуумировал их им же изобретенным способом. Его друг немецкий физик и математик Юлиус Плюккер (1801—1868) использовал эти трубки Гейслера для изучения электрических разрядов в вакууме и газах. [c.147]

    Реакционную смесь разбавляют водой и перегонкой освобождают от ацетона и непрореагировавшего изопропилового спирта. Полученный таким образом водный раствор перекиси водорода применяют для каталитического окисления аллилового спирта в глицерин. Для этого аллиловый снирт в водном растворе в присутствии 0,2%-ного раствора вольфрамовой кислоты (катализатор) окисляют 2 молярными объемами перекиси водорода при 60—70° в течение 2 час. После испарения воды и заключительной перегонки под вакуумом получают чистый глицерин с выходом 80—90%, считая на аллиловый спирт. [c.178]

    Из этих данных следовало, что, если частично превратившись в окалину, металл увеличил свой вес, то что-то еще из содержащегося в сосуде потеряло эквивалентное количество веса. Это что-то еще могло быть и воздухом. Однако в этом случае в сосуде должен был образоваться вакуум. Действительно, когда Лавуазье открыл сосуд, туда устремился воздух, и вес сосуда и его содержимого увеличился. [c.46]

    Экспериментаторам XIX в. представлялось весьма заманчивым попытаться пропустить ток через вакуум. Но чтобы результаты такого эксперимента были надежными, необходимо было получить достаточно глубокий вакуум. Попытки Фарадея пропустить электрический ток через вакуум окончились неудачей только потому, что ему не удалось получить достаточно глубокого вакуума. [c.147]

    Непрерывно действующий барабанный вакуум-фильтр (рис. 14) иредставляет собой непрерывно вращаюпщйся барабап 1, установленный при помощи цапф в подшипниках над корытом 2 с суспензией, причем часть барабана погружена в корыто. Сверху барабан может быть накрыт герметичным кожухом. Боковая поверхность барабана перфорирована и покрыта подкладочной сеткой и фильтро- [c.33]


    Плюккер впаял в трубки два электрода, создал между ними электрический потенциал и получил электрический ток. Под действием тока в трубках возникало свечение ( эффект накаливания ), характер которого зависел от глубины вакуума. При достаточно глубоком вакууме свечение в трубке исчезало, и только вблизи анода было заметно зеленое свечение стекла трубки. [c.147]

    Сам Плюккер и независимо от него Крукс показали, что такое отклонение существует. Оставалось решить еще один вопрос. Если катодные лучи представляют собой заряженные частицы, то электрическое поле также должно их отклонять. Однако доказать, что катодные лучи отклоняются в электрическом поле, удалось далеко не сразу. Только в 1897 г. английский физик Джозеф Джон Томсон (1850—1940), работая с трубками с очень глубоким вакуумом, сумел в конце концов показать, что катодные лучи отклоняются под действием электрического поля (рис. 20). Это было последним звеном в цепи доказательств, и теперь оставалось лишь согласиться с тем фактом, что катодные лучи представляют собой поток отрицательно заряженных частиц. Величина отклонения частицы в магнитном поле заданной напряженности определяется массой частицы и величиной ее электрического заряда. Томсону удалось измерить соотношение массы и заряда частицы, хотя измерить эти величины отдельно он не смог. [c.148]

    Рис. б. Фракции нефти, получаемые перегонкой при нормальном давлении и под вакуумом. [c.18]

    Сульфофториды, легко получаемые реакцией между сульфохлоридами и фтористым калием, применяемым в виде концентрированного водного раствора, обладают высокой термической устойчивостью. Они легко перегоняются в вакууме. [c.139]

    Искровой разряд в вакууме [c.143]

    При хлорировании до 60—65%-иого содержания хлора п(. лучают бледно-желтые густые и вязкие продукты, по внешним свойствам напоминающие бальзам. При комнатной температуре они не текучи и по своей консистенции близки к мягкой смоле. При высоком содержании хлора дальнейшее хлорирование протекает весьма медленно. Для получения хлорпроизводных с более высоким содержанием хлора хлорирование приходится проводить в растворителе при освещении ультрафиолетовыми лучами. В этих условиях без особых трудностей возможно получать продукты, содержащие до 75% хлора. После удаления растворителя перегонкой под вакуумом при 110° и обработки тонким порошком карбоната и сульфата натрия с последующим охлаждением получают хрупкие, напоминающие канифоль продукты с температурой каплепадения около 70°. В этих продуктах на каждый атом углерода приходится в среднем 1 атом хлора. [c.252]

    Для непрерывной фильтрации применяется таки е ленточный вакуум-фильтр (рис. 16), фильтрующая поверхность которого образуется бесконечной резиновой лентой с натянутой на не11 фильтровальной тканью. [c.35]

    Мононитросоединения до С18 могут перегоняться в высоком вакууме, тогда как динитросоединения выше С12 уже подвергаются разложению. [c.312]

    Скрытая теплота испарения при повышенном давлении меньше, чем при атмосферном, причем чем выше давление, тем меньше скрытая теплота испарения. При критических условиях скрытая теплота испарения равна ну.тгю. При вакууме скрытая теплота испарения больше, чем при атмосферном давлонип. [c.21]

    Внутренняя полость барабана разделена на ряд секций. Каждая внутренняя секция соединена с раснределительными головками, которые автоматически соединяют секцию с вакуум-насосом или компрессором. При вращении барабана каждая секция последоБательно проходит все фазы непрерывного процесса 1) фильтрацию — всасывание раствора из корыта 2) промывку осадка 3) сушку осадка 4) съем осадка 5) продувку фильтра. Первая и вторая фазы осу-вакуулгом. [c.34]

    Применение вакуума обычно благоприятно сказывается на показателях процесса ректификации, поскольку сниженпе давления позволяет понизить температурный уровень перегонкп п уменьшить необходнм((е количество орошения в колоние, а таа ке число тарелок. [c.226]

    Перегонка мазута на масла обычно ведется под вакуумом в присутствии водяного пара. Углубленно вакуума позволяет снизить или полностью исключить расход водяного пара, что улучшает техиико-. кономические показатели проце -а. [c.226]

    Приблизительно в 1875 г. английский физик Уильям Крукс (1832—1919) сконструировал трубки, в которых можно было получить более глубокий вакуум (трубки Крукса). Исследовать электрический ток, проходящий через вакуум, стало удобнее. Казалось совершенно очевидным, что электрический ток возникает на катоде и движется к аноду, где он ударяется в окружающее анод стекло и создает свечение. Чтобы доказать справедливость такого понимания явления, Крукс помещал в трубку кусок металла, прн этом на стекле на противоположном от катода конце появлялась тень. Однако в то время физики не знали, что представляет собой электрический ток. Они не могли вполне определенно сказать, что же все-таки движется от катода к аподу, правда им доподлинно было известно, что этот поток движется прямолинейно (поскольку тень от металла была четко очерчена). Не придя ни к какому выводу относительно природы этого явления, физики отнесли его к излучению , и в 1876 г. немецкий физик Эуген Гольдштейн (1850—1930) назвал этот поток катодными лучами. [c.147]


    Пер и-онка нефти вначале проводится при нормальном давлении последней фракцией этой стадии процесса является газойль. Получающийся остаток далее разгоняется под вакуумом. Первой фракцией разгонки под вакуумом является газойль, последние фракции представляют собой смазочные масла. Остаток от перегонки нефти может быть различным в зависимости от природы нефти. Нефти нафтенового основания дают асфальтсодержащий остаток остаток нефти парафинового основания представляет собой смесь высоковязких углеводородов, используемый для получения смазочных масел (брайтстоков). [c.17]

    Линии I — сырая нефть II — отходящие газы (парафиновые углеводороды) III —легкий бензин IV — средний бензин V — тяжелый бензин (бензин-растворитель, лаковый бензин) VI — керосин VII — дизельное топливо VIII — легкий газойль IX — остаток от атмосферной перегонки на перегонку под вакуумом X — отходящие пары вакуумной перегонки XI — тяжелый газойль XII — веретенное масло XIII—дистилляты машинного масла (а — легкий, б — средний, а — тяжелый) XIV — цилиндровое масло XV — остаток вакуумной перегонки асфальт из сильно ароматизированных нефтей, цилиндр — сток из парафинистых нефтей. [c.18]

    О с фенольными, крезольяымп и ксилепольными смесями использовались в Германии во время войны как пластификаторы, особенно для поливинилхлорида. С этой целью фенолы смешивали с мерзолем и через эту смесь при температуре около 40° продували аммиак. После отделения хлористого аммония и промывки 2%-ным раствором хлористого кальцпя полученный эфир освобождали от избыточного парафинового углеводорода продувкой водяным наром под вакуумом. В заключение продукт обрабатывался 2% тонсиля (отбеливающая земля) и фильтровался [46]. [c.141]

    Содержащи " хлористый натрий водный раствор глицерина перерабатывают методом, припят лм в мыловаренной промышленности. В испарителе удаляется болыпагг часть воды. Выделившиеся гристаллы хлористого натрия отделя от фильтрованием, а сырой глицерин подвергают перегонке. Для удаления хлорсодержащих соединопий дистиллят экстрагируют ксилолом, а затем подвергают ректифи гации в вакууме. [c.175]

    После завершения реакции в нечи, на что требуется около 5 мин., продукты реакции подвергают перегонке под вакуумом, в ходе которой в остатке получается чистая, свободная от воды гликолевая кислота, а в погоне смесь воды и гликолевой кислоты. Разбавленная гликолевая кислота снова применяется для абсорбции смеси наров воды и формальдегида, а полученная в виде остатка чистая гликолевая кислота этерифицируется и затем гидрируется 123]. [c.188]

    Полученное та1 иы образом масло после отделения от кислоты разделяется иерегонко11. В колонне, работающей при нормальном давлении, отделяют ацетон. Затем при пониженном давлении отгоняют кумол и а-метилстирол, которые после описанной ранее очистки гидрированием возвращаются в процесс. Остаток в кумоловой колонне состоит из фенола с примесью примерно 6% ацетофенона. Эта смесь разделяется затем перегонкой в вакууме, фенол отгоняется, а ацетофеноп остается в остатке. [c.233]

    Низкие температуры верха колонны (от —70° до —100°) достигаются дросселированием выделенного жидкого этана. Дросселированием до 1 ат достигается температура —70°, дросселирование с вакуумом позволяет довести охлаждение до —100°. Часть этана, дросселированного до 1 ат, охлаждают аммиаком. Охлажденный остаточный газ этановой колонны, состоящий главным образом из метана и водорода, отдает свое холодосодержание в противоточном регенераторе (теплообменнике) обогащенному этаном газу. При этом последний нагревается до 150° и испольэуется для регенерации силикагелевого осушителя. [c.44]

    Как уже отмечалось, при синтезе на катализаторе постепенно откладывается все большее количество высокоплавкого парафина, приводящего к постепенному снижению активности катализатора. Этот так называемый контактный или катализаторпый парафин в случае синтеза под нормальным давлением составляет около /з общего количества парафина и его выделяют экстракцией катализатора в конце рабочего периода. Контактный парафин имеет температуру плавления 70—80° и разделяется на мягкий и твердый парафины дистилляцией в вакууме при остаточном давлении 3—5 мм рт. ст. [c.129]

    И в этом случае дальнейшую переработку проводят ректификацией в трех колоннах. В первой удаляют избыток бензола, во второй — непревращенный керосин, в третьей получают чистый керилбензол. Вторая и третья колонны работают под вакуумом и обогреваются циркулирующим паром высокого давления. [c.248]

    Линии 1 — в атмосферу —отходящий газ 77/ —пода IV — к вакуум-насосу У— нар. [c.309]


Смотреть страницы где упоминается термин Вакуум: [c.53]    [c.111]    [c.8]    [c.28]    [c.30]    [c.33]    [c.33]    [c.34]    [c.35]    [c.35]    [c.35]    [c.36]    [c.18]    [c.163]    [c.47]    [c.240]    [c.247]    [c.306]    [c.326]    [c.327]   
Лабораторный курс гидравлики, насосов и гидропередач (1974) -- [ c.13 , c.16 , c.175 , c.284 ]

Общая химическая технология (1964) -- [ c.15 , c.88 , c.89 , c.291 , c.378 , c.380 , c.484 ]

Основы процессов химической технологии (1967) -- [ c.82 ]

Оборудование химических лабораторий (1978) -- [ c.0 ]

Охрана труда и противопожарная защита в химической промышленности (1982) -- [ c.218 , c.270 ]

Общий практикум по органической химии (1965) -- [ c.32 ]

Курс химии Часть 1 (1972) -- [ c.16 ]

Электрооборудование электровакуумного производства (1977) -- [ c.172 ]

Справочник по гидравлическим расчетам (1972) -- [ c.25 , c.82 ]

Лекции по общему курсу химии ( том 1 ) (1962) -- [ c.5 ]

Справочник по гидравлическим расчетам (1950) -- [ c.43 , c.125 , c.134 , c.157 ]

Предупреждение аварий в химическом производстве (1976) -- [ c.58 , c.207 ]

Краткая химическая энциклопедия Том 1 (1961) -- [ c.504 ]

Ректификация в органической химической промышленности (1938) -- [ c.240 ]

Электроника (1954) -- [ c.9 ]

Глубокое охлаждение Часть 1 (1957) -- [ c.185 , c.187 ]

Техника лабораторных работ (1982) -- [ c.190 , c.199 ]

Техника лабораторных работ Издание 9 (1969) -- [ c.330 ]

Кислород и его получение (1951) -- [ c.19 ]

Химическая термодинамика (1950) -- [ c.52 ]

Основы вакуумной техники Издание 4 (1958) -- [ c.9 ]

Общая технология синтетических каучуков (1952) -- [ c.30 ]

Дистилляция в производстве соды (1956) -- [ c.0 ]

Гидравлика и насосы (1957) -- [ c.21 ]

Общая химическая технология топлива (1941) -- [ c.69 , c.461 , c.462 , c.661 ]

Общая химическая технология топлива Издание 2 (1947) -- [ c.36 , c.305 , c.431 ]

Справочник по гидравлическим расчетам Издание 2 (1957) -- [ c.31 ]

Справочник по гидравлическим расчетам Издание 5 (1974) -- [ c.25 , c.82 ]

Краткая химическая энциклопедия Том 1 (1961) -- [ c.504 ]

Краткий справочник химика Издание 4 (1955) -- [ c.495 ]

Техника физико-химического исследования Издание 3 (1954) -- [ c.0 ]

Производство азокрасителей (1952) -- [ c.194 ]

Микро и полимикро методы органической химии (1960) -- [ c.0 ]

Лекции по общему курсу химии Том 1 (1962) -- [ c.5 ]

Основы гистохимии (1980) -- [ c.20 ]

Справочник по обогащению руд Издание 2 (1983) -- [ c.97 ]

Основы вакуумной техники (1957) -- [ c.9 ]

Глубокое охлаждение Часть 1 Изд.3 (1957) -- [ c.185 , c.187 ]

Кислород и его получение (1951) -- [ c.19 ]




ПОИСК







© 2025 chem21.info Реклама на сайте