Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорость движения

    При движении по транспортной трубе скорость движения частиц твердого материала отстает от скорости движения газа. Разность между скоростью газа и скоростью частиц называется скоростью скольжения, а отношение скорости газа к скорости частиц — коэффициентом скольжения. Обычно коэффициент скольжения меняется в пределах от 1,3 до 3. [c.82]


    Потеря напора в змеевике печи непосредственно связана со скоростью движения продукта в печи. Скорость продукта в трубах печи должна иметь определенное минимальное значение, так как низкая скорость может привести к закоксовыванию и прогару труб. Чрезмерное же повышение скорости продукта приводит к увеличению потери напора в змеевике печи и, следовательно, увеличивает не- [c.130]

    Различают скорость движения в поровом канале и д и скорость фильтрации IV. [c.63]

    При жидкостном трении надежность смазки, или, что то же самое, приложенная максимальная сила возрастает с увеличением скорости движения трущихся поверхностей и с увеличением вязкости масла, что можно видеть, подставив в вышеприведенную формулу величину силы трения, выраженную через коэффициент трения и приложенную нагрузку  [c.130]

    В пределе допускаемая скорость движения жидкости [c.28]

    Максимально допустимая скорость движения жидкости в барабане [c.47]

    Величина б должна зависеть не только от скорости движения жидкости, но и от способа ее подведения, а также от геометрии электрода. [c.312]

    Для технических расчетов введено понятие скорости фильтрации, представляющей собой скорость движения газа (жидкости), отнесенную к полной площади поперечного сечепия слоя. [c.63]

    С другой стороны, с увеличением скорости движения трущихся поверхностей и вязкости масла увеличивается сила трения, т. е. возрастают потери мощности на трение. Это противоречие разрешается путем подбора масла надлежащей вязкости для быстро вращающегося вала в подшипнике берут масло меньшей вязкости, для медленно вращающегося — большей вязкости. Гидродинамический режим смазки является наиболее приемлемым для трущихся деталей, так как он обеспечивает малый износ деталей и малые потери мощности на трение. [c.130]

    Трубы в коивекциоиной камере могут располагаться в коридорном либо в шахматном порядке. Обычно принято располагать их в шахматном порядке, так как коэффициент теплоотдачи в этом случае при прочих равных условиях всегда выше. Коэффициент теплоотдачи кониекцпе также возрастает с уменьшением числа труб п ряду и с сокран епием расстояния между осями труб, так как это способствует увеличению скорости движения газов в камере конвекции. [c.128]

    В два последовательно соединенных реактора омыления, из которых первый заполнен нацело, а второй лишь примерно на две трети, при помощи циркуляционного насоса через нагреватель, где достигается требуемая температура, подается горячая эмульсия амилового спирта, воды и олеиновокислого натрия для создания требуемой скорости движения омыляемого раствора. Из расходного бака для хлористого амила непрерывно поступает 400 л час, а из расходного бака щелочного раствора соответствующее количество 12—15%-ного раствора едкого натра и олеиновой кислоты. Температура достигает 170—180°. [c.220]


    Стабильностью горения называется способность сохранять при горении фронт пламени при различных отклонениях от нормального режима как в сторону бедных, так и богатых смесей. Условием стабилизации пламени в воздушно-реактивном двигателе является равенство скорости распространения пламени и скорости движения потока в камере сгорания. [c.81]

    Однако для многих трущихся деталей невозможно создать гидродинамический режим смазки из-за конструктивных особенностей узла трения. Кроме того, даже в подшипниках, рассчитанных для работы в условиях жидкостной смазки, в определенные периоды их работы гидродинамический режим трения может нарушаться. Дело в том, что при повышении нагрузки на масляную пленку, при понижении вязкости масла или при снижении скорости движения поверхностей уменьшается толщина пленки. [c.130]

    С развитием авиационного двигателестроения повысились тепловые напряжения, скорости движения и нагрузки на трущиеся детали двигателей. Масло в двигателе подвергается воздействию высоких температур, каталитическому влиянию различных металлов, большим давлениям, окислительному действию кислорода воздуха. Условия работы масла значительно меняются в зависимости от типа двигателя, его конструктивных особенностей. В некоторых случаях для смазки одного и того же двигателя, работающего в различных условиях (арктических или экваториальных), требуются различные по качеству масла. Для различных типов авиационных двигателей, а также для агрегатов и приборов требуются прежде всего масла различной вязкости. Вязкость обычно является основным определяющим показателем при классификации масел. [c.134]

    Если учесть, что дальнейшее развитие техники будет связано прежде всего с ростом скоростей движения, удельных нагрузок на детали машины и с повышением рабочих температур, то вполне очевидно, что нефтяные смазочные материалы будут совершенно непригодны для этих,условий. В последние годы все большее внимание уделяется изысканию и исследованию новых по своей природе и по свойствам смазочных материалов. [c.143]

    Для узлов трения авиационных двигателей характерны большие скорости движения. Так, например, скорость скольжения основных трущихся деталей находится в пределах 6—15 м/сек. Масло в двигателе приходит в соприкосновение с самыми разнообразными металлами и сплавами сталями различных марок и различной обработки, алюминиевыми сплавами, баббитами, свинцовистой бронзой, кадмиево-серебряными сплавами и др. [c.178]

    Нужна идея как повысить скорость движения ледокола, скажем, вдвое По условиям задачи нельзя использовать вместо ледокола подводные лодки, самолеты, санные поезда. [c.132]

    На основе этих соображении можно получить следующее уравиение для средней скорости движения попов -го вида  [c.129]

    Подстановка этого значения в любое нз уравнений для скорости движения положительных ионов (6,24) илн отрицательных (6,25). позволяет найти скорость передвижения электролита [c.143]

    Изучение диффузионного перенапряжения позволило установить природу предельной плотности то <са, ограничивающей возможность интенсификации электрохимических процессов, и разработать меры, снимающие или уменьшающие это ограничение. К числу таких мер относится и наиболее легко технически осуществимое увеличение скорости движения жидкости. [c.320]

    Уравненио (57) выведено применительно к неподвижному слою катали.затора. При определении потерн напора в движущемся слое уравнение (57) применимо ири условии, что под скоростью движения потока следует понимать относительную скорость. В случае противоточного пли прямоточного дви/кения газового потока и катализатора [c.65]

    Эта особенность применительно к процессу абсорбции в насадочной колонне предопределяет два важных результата. Прежде всего, если сопротивление массопереносу в газовой фазе незначительно, скорость абсорбции не зависит от. скорости движения жидкости, по крайней мере пока последняя не влияет на величину поверхности раздела, приходящуюся на единицу объема. Во-вто-рых, скорость абсорбции на единицу объема Va прямопропорциональна величине поверхности раздела фаз и, следовательно, величину скорости абсорбции можно использовать для определения величины поверхности раздела а. Подробно это будет рассмотрено в разделе. 8.3. [c.90]

    Коэффициент теплопередачи зависит главным образом от скорости движения дымовых газов в камере конвекции чем выше эта скорость, тем больше коэффициент теплопередачи. При естественной тяге с увеличением скорости нозрастает необходимая высота дымовой трубы и в этом случае не рекомендуется иметь эту скорост). выше 6 м сек. В случае создания принудительной тяги эта скорость может быть увеличена. Однако практически ввиду конструктивных трудностей компактного расположения конвекционных труб скорость дымовых газов в камере конвекции ниже указанной цифры. [c.105]


    Тенденция к равенству величин к для физической и химической абсорбции проявляется только при высоких скоростях движения жидкости отсюда ожидается, [c.110]

    В билогарифмических координатах зависимость V от скорости движения жидкой фазы выражалась прямыми линиями с теоретически рассчитанным наклоном ( /з), таким образом по положению этих линий можно определить величины Патерно [27] рас- [c.130]

    Под скоростью движения в поровом канале понимают истиииую скорость дви/кения кидкости через сечение всех пор слоя. [c.63]

    При этом титровании Н -иоиы соляной кислоты постепенно связываются ОН -ионами щелочи с образованием неионизированных молекул воды, а в растворе накапливаются Na -ионы щелочи, замещая таким образом И+-ионы. Но так как скорость движения Н при электролизе значительно больше, чем скорость движения Na , указанное замещение понижает электропроводность раствора . В точке эквивалентности все Н+-ионы соляной кислоты окажутся замещенными На+-ионами, и электропроводность раствора будет иметь наименьшую величину. При добавлении же избытка щелочи она будет снова возрастать [c.194]

    Несколько слов о терминах вещество и поле . В вепольном анализе (т. е. анализе вещественно-полевых структур при синтезе и преобразовании технических систем) под веществом понимают не только вещество, но и технические системы и их части, а иногда и внешнюю среду. Например, если в задаче идет речь о повышении скорости движения ледокола, то вещество — это ледокол и лед. [c.77]

    Время релаксации 1г, т. е. врем достижения стационарности (постоянной скорости движения), по гидродинамической теории, должно быть равно 1г=гп11к1 или в соответствии с законом Стокса [c.119]

    Считается, что энергия активации определяется в первую очередь работой создания полости в растгюрнтеле, куда ион переходит из предыдущего положения равиовесня. Энергия активации, подсчитанная из температурной зависимостн скорости движения иопов, оказалась примерно одинаковой для всех нонов, кроме ионов водорода. Ее значение для водных растворов колеблется между 16 и 18 кДж-моль-, что довольно близко к энергии активации вязкого течения воды обычно это связывают с тем, что перескоки совершают гидратированные ионы, хотя возможны и другие объяснения. Энергия активации миграции иоиов водорода составляет всего лишь [c.129]

    Как следует из схемы н из рнс. 5.5, молекула воды, оставшаяся после ухода протона из гндроксониевого иона, оказывается ориентированной неблагонриятно для следующего перескока протона, я для ес поворота до нужной ориентации требуется дополнительная энергия, что должно снижать скорость движения протона (прототропная теория). Относительно того, какая именно стадия определяет скорость движения протона — собственно перескок протона [c.130]

    Так как энергия отрыва протона от гидроксильного остатка ОН в молекуле воды больше, чем эне]згия отрыва Н - от молекулы воды в гидроксонневом ионе, то и вероятность таких перескоков должна быть меньше, и скорость движения гидроксильных ионов ниже, чем водородных. Неблагоприятная ориентация образовавшейся молекулы воды здесь также увеличивает пространственные затруднения для следующего перескока протона, в результате чего скорость движения гидроксильных ионов снижается. [c.131]

    Градиент потенциала в растворе электролита может возникать либо в результате наложения внешнего электрического поля на электрохимическую систему (см. гл. 4 и 5), либо в результате различия в скоростях движения положительных и отрицательных ионов, приводящего к появлению так называемого диффузионного потенциала (см. ниже). Следовательнс, в отличие от злектропроводно-сти, где можно было пренебречь и конвекцией, и молекулярной диффузней и рассматривать миграцию в чистом виде, при изучении диффузии электролитов необходимо учитывать градиенты как химического, так и электрического потенциалов. [c.140]

    Таким образом, благодаря созданию в. ходе диффузии электролита диффузионного потенциала, происходит выравнивание скоростей движения противоположно заряженных ионов, т. е. ш+ становится равной U- и равной ш , где iu,—скорость движения иоиов под одновременным воздействием градиентов химического и э гкт-рохимического потенциалов. Так как /J = oi ,, то в этих условиях должно соблюдаться равенство [c.143]

    Эти весьма интересные соображения не учитывают, однако, того, что переход совершают в одном и том же направлении (из металла в раствор) частицы разного заряда, подобно тому как это происходит при диффузии ионов в растворах электролитов. Поэтому здесь при вэзникновении скачка потенциала может быть достигнуто не равновесное, а стационарное состояние, при котором процесс одностороннего перехода не прекращается, а лишь достигается выравнивание скоростей движения противоположно заряженных частиц, но они ио-прежнему будут переходить из металла в раствор. [c.228]

    Выяснилось, однако, чго довольно часто предельная плотность тока наступает значительно раныге, т. е. при существенно меньших скоростях электродного. процесса, чем этого можно было ожидать в условиях чисто диффузионных ограничений. Помимо того, значение этой низкой предельной плоскости тока оказалось независящим от скорости движения жидкости. Все это указывало на недиффузионный характер процесса. [c.320]

    Если газ барботирует через слой жидкости, величину /о можно определить по уравнению (9). Обычные диаметры пузырьков составляют 0,2—0,6 см скорости движения пузырьков 15— 35 см1сек. При этих значениях интервал величин 1о будет [c.20]

    Ранние исследования абсорбции СОг буферными растворами с помощью лабораторных абсорберов были проведены Кеннеди [23, 24] и Ропером [16]. Ропер исследовал влияние скорости движения жидкости, содержания бикарбоната, общей концентрации и температуры на скорость абсорбции, проводимой в дисковой колонне. Его данные подтвердили выводы Комстока и Доджа [15] и Фурнеса и Беллингера [14], которые будут обсуждаться в разделе [c.128]

    Ре.= URID > 1), в случае движения капель и пузырей (i/ — скорость движения центра тяжести —радиус капли или иузыря показывает [11, 12], что пё-риод проницания равен ио порядку величины Трел 2/ /i/, т. е. времени контакта (по Хигби T = 2RIU). Иными словами, хотя время контакта и мало, но период праницания не больше. Таким образом, основное допущение теории Хигби в этом случае не выполняется. В дальнейшем оказалось, что предположение о нестационарности, лежащее в основе модели Хигби, отражает некоторые стороны гидродинамики течения в вязком подслое развитого турбулентного пограничного слоя. Однако реальная нестационарность имеет совсем иную природу и П0 имеет ничего общего с предположениями Хигби. [c.171]


Смотреть страницы где упоминается термин Скорость движения: [c.26]    [c.25]    [c.28]    [c.83]    [c.261]    [c.7]    [c.104]    [c.122]    [c.143]    [c.319]    [c.381]    [c.110]   
Псевдоожижение твёрдых частиц (1965) -- [ c.145 , c.150 ]

Курс теоретической электрохимии (1951) -- [ c.0 ]

Жидкостные экстракторы (1982) -- [ c.0 ]

Основные процессы и аппараты химической технологии Издание 8 (1971) -- [ c.43 ]




ПОИСК







© 2025 chem21.info Реклама на сайте