Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цветной трансформации метод

    Большие возможности дает применение так называемого метода цветной трансформации , разработанного Е. М. Брумбергом . Для таких исследований необходим микроскоп Брумберга. Бесцветные кристаллы разных соединений при наблюдении в этом микроскопе кажутся окрашенными в разные цвета. Это дает возможность идентифицировать кристаллы осадка, независимо от их внешней формы. По различной окраске можно в одном осадке обнаруживать кристаллы разных соединений - . Впервые применил этот метод исследования в микрокристаллоскопии К. П. Столяров .  [c.35]


    Эти задачи в значительной мере разрешаются наблюдениями в ультрафиолетовых лучах с применением метода цветовой трансформации. Сущность последнего заключается в проявлении видимыми лучами невидимого изображения предмета, даваемого объективом ультрафиолетового микроскопа в результате поглощения ультрафиолетовых лучей. Для этого используется комбинированный пучок света, состоящий из красных и ультрафиолетовых лучей, и люминесцирующий экран, люминесценция которого возбуждается ультрафиолетовыми лучами определенной длины волны. Вещество, поглощающее ультрафиолетовые лучи, располагается перед люминесцирующим экраном, и на него направляется комбинированный пучок света. В зависимости от степени поглощения ультрафиолетовых. лучей наблюдатель видит на экране слабое или плотное теневое пятно, окруженное светом люминесценции в местах, на которые упали лучи, не поглощенные телом. Само теневое пятно на экране окрашено остающимися после прохождения через вещество красными лучами в красный цвет. Таким образом создаются цветные изображения бесцветных объектов, услов- [c.42]

    При работе по фотографическому варианту метода цветовой трансформации наряду с ультрафиолетовым микроскопом применяется хромоскоп — прибор, позволяющий одновременно рассматривать три снимка в лучах с волнами различной длины. Для этого негатив устанавливается на хромоскоп, оптическая схема и конструкция которого обеспечивают одновременное освещение каждого из трех снимков негатива, сделанных в трех различных областях длин воли, и совмещение их в одно цветное изображение, которое проектируется объективом хромоскопа на фотопленку насадной камеры или в поле зрения визуального тубуса. [c.47]

    Метод цветовой трансформации имеет два основных варианта 1) фотографический, при котором три снимка, получаемые в ультрафиолетовых лучах разных длин волн, окрашиваются в три цвета — красный, зеленый и синий, а затем рассматриваются совместно при помощи специального прибора, налагающего изображения этих снимков друг на друга, либо фотографируются на цветную пленку и 2) визуальный, основанный на получении при помощи ультрафиолетовых лучей цветового изображения на многоцветных флуоресцирующих экранах. [c.7]

    Для наблюдения объектов в лучах с короткой длиной волны советский ученый Е. М. Брумберг сконструировал ультрафиолетовый микроскоп МУФ-1 и предложил метод цветовой трансформации. Один из вариантов этого метода — фотографический— заключается в получении с бесцветных препаратов цветных микрофотографий, окраска которых определяется спектрами поглощения определенных веществ препарата в ультрафиолетовых лучах. Для этого можно воспользоваться биологическим микроскопом, имеющим оптику, прозрачную для ультрафиолетовых лучей (зеркально-линзовые объективы, кварцевый коллектор, кварцевые предметные и покровные стекла). Осветителем служит кварцевая ртутная лампа. [c.48]


    Еще одна группа методов получения трансгенных растений, устойчивых к действию фитовирусов, включает введение и экспрессию генов антивирусных антител, вирусных сателлитных РНК. Интересный эффект дало введение в геном растений гена человеческого интерферона JFN — одного из ключевых белков индукции иммунитета у млекопитающих. С помощью вируса мозаики цветной капусты геном интерферона были трансформированы растения турнепса, табака, картофеля, что повысило устойчивость этих растений к вирусным заболеваниям. Однако в настоящее время более перспективными считаются методы, основанные на использовании растительных генов, обусловливающих высокую устойчивость трансформации растений и низкую устойчивость к фитопатогенам. [c.154]

    Следует учитывать две основные особенности маркерных генов. Во-первых, их структуру (нуклеотидную последовательность), которая определяет такие факторы, как регуляция транскрипции (конститутивная экспрессия или включение под действием определенных внешних условий или стадии развития), скорость транскрипции, стабильность транскрипта и эффективность трансляции. Во-вторых, активность продукта данного гена, который, очевидно, отвечает за доминантную экспрессию подходящего селективного фенотипа. В большинстве обычных векторов трансформации в качестве селективных маркеров используют прокариотические ферменты устойчивости к антибиотикам, которые были адаптированы с помощью генно-инженерных методов для конститутивного синтеза в растительных клетках (табл. 2.1). В некоторых экспериментах в качестве доминантных маркеров успешно использовались ферменты, обеспечивающие защиту от гербицидов. Обычно добиваются слияния кодирующей последовательности фермента с промоторами, выделенными из Т-ДНК или генома вируса мозаики цветной капусты (ВМЦК), на 5 -конце, а на З -конце —с сигналом полиаденилирования (тоже полученным, как правило, из какого-либо гена Т-ДНК). В качестве маркерных генов наиболее широко используют гены устойчивости к таким антибиотикам, как канамицин, G418 [8, 27], гигромицин [54] и блеомицин [28] Недавно для трансформации растительных клеток в качестве доминантных маркеров были попользованы гены, обеспечивающие устойчивость к гербицидам, таким, как глифосат [45]. Поскольку селективные маркерные гены нормально функционируют в трансформированных [c.33]


Смотреть страницы где упоминается термин Цветной трансформации метод: [c.240]   
Микрокристаллоскопия (1955) -- [ c.35 ]




ПОИСК





Смотрите так же термины и статьи:

Метод цветной

Методы трансформации



© 2024 chem21.info Реклама на сайте