Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гена последовательности кодирующие и некодирующие

    Уникальные последовательности генома содержат не только гены, кодирующие белки, но и последовательности ДНК, расположенные между генами, а также в составе интронов, разделяющих участки ДНК, кодирующие полипептиды. Роль некодирующих уникальных последовательностей, составляющих основную часть эукариотического генома, остается до сих пор не выясненной. [c.190]


    ГЕН, участок молекулы ДНК (у нек-рых вирусов — РНК), в к-ром закодирована информация, обеспечивающая развитие определ. признака (св-ва) у данного организма и его передачу в ряду поколений. Участки нуклеиновой к-ты, кодирующие аминокислотную последовательность белков или последовательность оснований транспортных и рибо-сомных РНК, наз. структурными Г. Последние вместе с необходимыми для их функцион. выражения регуляторными участками объединяются в более сложные генетич. единицы — опероны. Многие Г. высших организмов имеют прерывистое строение кодирующие части гена (экзоны) чередуются с некодирующими вставками (интронами). [c.125]

    Геном эукариот составляют уникальные и повторяющиеся последовательности нуклеотидов. Содержание уникальных последовательностей в геноме, определенное на основании кинетики реассоциации фрагментированной ДНК, варьирует у разных организмов, и их доля составляет 15-98% от всей ДНК. Несмотря на то, что во фракцию уникальных последовательностей попадают многие структурные гены, большая часть этих последовательностей является некодирующей и обычно не заключает в себе генетической информации в общепринятом значении этого термина не кодирует функционально значимые полипептидные цепи или РНК. Примером таких уникальных последовательностей являются интроны, появление которых в геноме эукариот пока не нашло своего объяснения [6]. [c.24]

    В пределах одного гена, который кодирует полипептид, участок молекулы ДНК подразделяется на функционально различные единицы (рис. 3.14). Отличительная черта строения многих генов эукариот — прерывистость структуры смысловой части. Смысловые участки, несущие информацию о последовательности аминокислот в белке — экзоны, чередуются с участками некодирующих последовательностей — интронами. Часто интроны по длине могут превосходить экзоны. Наличие избыточных последовательностей приводит к тому, что длина гена может быть в несколько раз больше, чем требуется для кодирования аминокислот в белке. Гаплоидный набо > хромосом человека содержит 3,5 х 10 нуклеотидных пар, что по количеству соответствует примерно 1,5 млн. пар генов. Однако данные по изучению генома человека показывают, что организм человека имеет не более 100 тыс. генов. Это значит, что в клетках человека только 1% ДНК выполняет кодирующие функции. В отношении оставшихся 99% существуют разные гипотезы, обосновывающие их регуляторные и [c.52]

Рис. 37.8. Последовательность гена и его РНК-транскрипта. Показаны кодирующая и некодирующая цепи, и отмечена их полярность. РНК-транскрипт, имеющий полярность 5 -+ 3, комплементарен кодирующей цепи (с полярностью 3 - 5 ) и идентичен по последовательности (за исключением замен Т на У) и полярности некодирующей цепи ДНК. j Рис. 37.8. <a href="/info/293261">Последовательность гена</a> и его РНК-транскрипта. Показаны кодирующая и некодирующая цепи, и отмечена их полярность. РНК-транскрипт, имеющий полярность 5 -+ 3, комплементарен <a href="/info/1350234">кодирующей цепи</a> (с полярностью 3 - 5 ) и идентичен по последовательности (за исключением замен Т на У) и полярности некодирующей цепи ДНК. j

    Было обнаружено, что ДНК эукариотических клеток состоит на 50% из повторяющихся последовательностей оснований, а остальная часть представляет собой уникальные последовательности. Вполне вероятно, что эти короткие повторяющиеся последовательности ДНК распределены по всему геному и перемежаются с более длинными отрезками уникальных последовательностей. Функция повторов в организации генов и транскрипции неизвестна, ще одну трудность в понимании строения генома эукариот представляет то, что гены не всегда состоят из непрерывных последовательностей кодонов, которые кодируют весь белок. Некоторые гены расщеплены и имеют некодирующие последовательности оснований (интроны), распределенные между последовательностями, кодирующими белок (экзонами). [c.33]

    Гены человека, как правило, представляют собой функционально прерывистую последовательность нуклеотидов (рис. ГУ. 15). Относительно короткие кодирующие последовательности оснований чередуются в них с длинными некодирующими последовательностями. Последовательности гена, представленные в молекуле зрелой иРНК, получили название экзонов. Именно экзоны являются кодирующими участками гена, контролирующими аминокислотную последовательность белков. Экзоны разделены некодирующими участками — нитронами, которые вырезаются (сплайсинг) в процессе созревания иРНК и не участвуют в процессе трансляции. В настоящее время в понятие ген включаются не только транскрибируемые области (экзоны и интроны), но и фланкирующие ген последовательности. Фланкирующие области гена, как правило, высоко консервативны, т.е. характеризуются постоянством нуклеотидной последовательности, наблюдаемым даже при сравнении представителей различных видов. Фланкирующие области гена содержат последовательности, необходимые для его правильной работы например, промоторная область в начале 5 -области или хвостовая нетранслируемая область поли-А, расположенная на З -конце гена. Так, ТАТА — бокс (последовательность чередования [c.71]

    Принцип ДНК делает РНК делает Белок , уже описанный в гл. 2, применим для всех организмов от простых бактерий до сложных позвоночных, включая человека. Однако существует одно важное отличие структуры генов высших клеток, включая клетки позвоночных, и соответствующих генов бактерий. Кодирующие последовательности эукариотических генов (экзо-ны) перемежаются с некодирующими участками ДНК (нитронами). [c.102]

    Как обсуждалось в гл. 15, регуляция прокариотических генов осуществляется за счет взаимодействия специализированных регуляторных белков с регуляторными участками последовательности ДНК. Теперь мы знаем, что это в равной мере относится и к регуляции эукариотических генов. Применение методов работы с рекомбинантными ДНК позволило выделить и изучить целый ряд индивидуальных генов и тесно сцепленных с ними регуляторных последовательностей из различных типов эукариотических клеток и их вирусов. В результате таких исследований удалось значительно расширить круг представлений о структуре кодирующих и некодирующих участков эукариотических ДНК и РНК-транскриптов. [c.207]

    Информация, содержащаяся в одноцепочечной РНК, реализуется в виде определенной последовательности пуриновых и пиримидиновых оснований (т. е. в первичной структуре) полимерной цепи. Эта последовательность комплементарна кодирующей цепи гена, с которой считывается РНК. Вследствие комплементарности молекула РНК способна специфически связываться (гибридизоваться) с кодирующей цепью, но не гибридизуется с некодирующей це- [c.59]

    Вероятно, большинство белков кодируются генами, состоящими из многих небольших экзонов 240 Основная фракция ДНК высших эукариот состоит из повторяющихся некодирующих последовательностей нуклеотидов 242 [c.534]

    У бобовых растений синтез легоглобинов кодируется семейством из нескольких сцепленных Lb-генов. В настоящее время подробно изучена структурно-функциональная организация этих генов выявлена их ин-трон-экзонная структура, изучена организация промоторов, расположение кодирующих и некодирующих участков. Экспрессия Lb-генов в клубеньках, по всей видимости, основана на обмене партнеров регуляторными сигналами. Об этом говорит присутствие в промоторах этих генов последовательностей, которые гомологичны некоторым бактериальным промоторам и могут быть мишенями для сигнальных молекул, поступающих в растительные клетки от бактерий. Удалось выявить и бактериальные ДНК-связывающие белки, которые взаимодействуют с промоторами легоглобиновых генов. [c.179]

    Разработанные сравнительно недавно методы работы с рекомбинантными ДНК (обсуждаемые в гл. 9) позволили сравнить нуклеотидные последовательности индивидуальных мРНК, кодирующих некоторые известные эукариотические белки, с соответствующими фрагментами последовательностей в хромосомной ДНК. Благодаря использованию этих методов в 1977 г. было сделано сенсационное открытие. Оказалось, что внутри кодирующих областей некоторых эукариотических генов содержатся нетранслируемые фрагменты последовательности. Так, некодирующие внутренние нуклеотидные последовательности были обнаружены в структурных генах р-цепей кроличьих и мышиных гемоглобинов, легких цепей иммуноглобулинов и куриного овальбуми-на (основного компонента яичного белка). На сегодняшний день ясно, что наличие внутренних некодирующих последовательностей является типичным, хотя и не обязательным свойством эукариотических генов. На карте структурной организации гена овальбумина (рис. 11.17) показано, как семь протяженных внутренних некодирующих участков последовательности (интронов) разделяют смысловую последовательность, кодирующую зрелую мРНК, на восемь фрагментов (экзонов). [c.55]


    Функциональные последовательности ДНК в геномах высших эукариот, по-видимому, собраны из небольших генетических модулей по крайней мере двух типов. Блоки кодирующих последовательностей образуют множество комбинаций для синтеза белков регулирующие последовательности рассеяны среди длинных некодирующих участков и контролируют экспрессию генов. Как кодирующие последовательности (экзоны). так и регуляторные последовательности (энхансеры) по размеру обычно не превышают нескольких сот нуклеотидных пар. В геномах происходят разнообразные генетические рекомбинации, обусловливающие возникновение дупликацип и перенос последовательностей ДНК. В некоторых случаях дутщируются целые гены, которые могут затем приобретать новые функции. В результате рекомбинации иногда возникают новые белки, при этом происходит перетасовка экзонов ти изменение экспрессии генов за счет перекомбинации энхансеров. Перестановка последовательностей имеет огромное значение для эволюции организмов, у эутриот она в значительной мере упрощена благодаря прерывистой структуре генов эукариот. Важно также, что гены эукариот подвержены многочисленным активирующим и подавляющим влияниям, которые оказывают на них разные комбинации удаленных от них энхансеров. [c.248]

    Последовательность рибонуклеотидов в молекуле РНК комплементарна последовательности дезоксирибонуклеотидов одной из цепей ДНК (рис. 37.8). Та из двух цепей ДНК, по которой непосредственно идет транскрипция РНК-молекул, называется кодирующей цепью. Другую цепь часто называют некодирующей цепью соответствующего гена. Важно понимать, что в двухцепочечной ДНК, содержащей много генов, кодирующая цепь каждого данного гена вовсе не обязательно представлена в рамках одной и той же цепи ДНК (рис. 39.1). Другими словами, одна цепь молекулы ДНК для одних генов является кодирующей, а для других соответственно— некодирующей. Обратите внимание, что, за исключением замещения Т на и, последовательность РНК-транскрипта идентична некодирующей цепи. [c.82]

    Подобные копии применяются для экспрессии в бактериях важных с медицинской точки зрения белков человека и животных, таких, как инсулин, ренин, гормон роста и др. В данном случае фрагменты генома нельзя использовать. Это связано с тем, что у эукариот отдельные части некоторых структурных генов разобщены кодирующие последовательности (экзоны) чередуются с некодирующими вставочными последовательностями (нитроны). Ген целиком транскрибируется с обра.зованием первичного транскрипта РНК, затем транскрипты нитронов выщепляются, а последовательности соответствующие экзонам, сши- [c.136]

    Гены. Мы рассматриваем ген как молекулярную структуру. Ген эукариот-это совокупность сегментов ДНК, образующих экспрессирующуюся единицу. В результате экспрессии образуются один или несколько функциональных генных продуктов-РНК или полипептидов. Каждый ген содержит один или несколько сегментов ДНК, ответственных за регуляцию транскрипции и, следовательно, за регуляцию экспрессии гена. Кодирующие области-это сегменты ДНК, которые кодируют какой-либо полипептид или функциональную РНК либо их составляющие. Те сегменты ДНК, с которых не транскрибируется никакой генный продукт, называются некодирующими. Одни некодирующие области (например, регуляторные сигналы, фланкирующие кодоны, или вставочные последовательности, прерывающие ген) являются составными частями генов. Другие участки, имеющие отношение к репликации ДНК или выполняющие какие-то пока неизвестные функции, находятся между генами. [c.156]

    Как правило, прокариотические гены состоят из небольшого регуляторного участка (100—500 п.н.) и большого кодирующего белок сегмента (500— 10000 п. н.). Часто несколько генов контролируются одним и тем же регуляторным элементом. Большинство генов млекопитающих имеют более сложную структуру. Кодирующие области эукариотических генов прерываются и чередуются с некодирующими участками. Эти участки, будучи транскрибированными, удаляются в процессе созревания первичного транскрипта. Кодирующие области (остающиеся в зрелой мРНК) называются экзонами. Нуклеотидные последовательности ДНК, находящиеся между экзонами, называются интронами (рис. 36.1). Интро-ны удаляются из первичного транскрипта до того. [c.36]

    Б. У эукариот почти все гены, кодирующие белки, устроены сложнее. У них последовательности, кодирующие белок (экзоны), прерываются некодирующими последовательностями (интронами). На рисунке это обозначено промежутками между кодирующими участками. Редким исключением (гены без интронов) в высших клетках являются гены, кодирующие гистоны (табл. 5.1), а также псевдогены и функциональные ретрогены, появившиеся в результате обратной транскрипции молекулы мРНК (см. гл. 7). Таким образом, по матрице ДНК создается длинная [c.104]

    У бактерий полипептидные цепи кодируются непрерывной последовательностью три-плетных кодонов. В течение многих лет считалось, что гены высших организмов также непрерывны. Эта точка зрения была неожиданно опровергнута в 1977 г., когда в нескольких лабораториях было открыто, что некоторые гены имеют прерывистое строение. Папример, ген -цепи гемоглобина прерывается в области, кодируюш ей аминокислотную последовательность, длинной некодирующей вставочной последовательностью из 550 пар оснований и короткой последовательностью из 120 пар оснований. Таким образом, ген -глобина разделен на три кодирующие последовательности  [c.78]

    Некоторые интересные генетические перестройки происходят в клетках млекопитающих в ходе нормального развития и дифференцировки. Например, в клетках зародышевой линии мыши гены и С , кодирующие единичную цепь молекулы иммуноглобулина (см. гл. 41), разнесены в геноме на значительное расстояние. В ДНК зрелых иммуноглобулин-продуцирующих (плазматических) клеток эти же гены оказываются на более близком расстоянии и транскрибируются в составе единого первичного транскрипта. Однако и после перестройки ДНК в ходе дифференцировки последовательности этих генов непосредственно не смыкаются. Между ними располагается промежуточная некодирующая последовательность (интрон) длиной около 1200 пар оснований, которая удаляется из первичного транскрипта при процессинге в ходе созревания мРНК (см. гл. 39 и 41). [c.73]

    Первичные структуры а-, Р-, у-, 5-, е- и -полипептидных цепей Г. человека, а также мн. др. глобиновых цепей разл. происхождения известны. Гены, кодирующие а-глобиновые цепи Г. человека, сцеплены и расположены в последовательности 42-4 - 2-а1 на хромосоме 16 (цифры-номера дуплицированных генов) группа генов, кодирующих др. полипептидные цепи, также непосредственно примыкающие один к другому (8-72-71 -8-Р), локализована на хромосоме 11. Первичная структура а- и не а-глобиновых генов человека известна. Для каждого из них установлено наличие двух нитронов (отрезков ДНК, прерывающих кодирующие участки,-экзоны) и больших некодирующих участков, находящихся на флангах генов. Биосинтез гема, а- и р-глоби-новых цепей, а также сборка тетрамерных молекул НЬА осуществляется в клетках эритроцитарного ряда и практически завершается к моменту выхода зрелых эритроцитов (их продолжительность жизни у человека составляет 120-130 дней) из костного мозга в кровяное русло. [c.516]

    С открытием интрон-экзонного строения генов, характерного для эукариотических клеток, начался новый этап исследований на пути реализации генетической информации. Транскрипция гена, состоящего из чередующихся кодирующих и некодирующих нуклеотидных последовательностей, обеспечивала полное его копирование и приводила к синтезу РНК-предшественника. Поэтому было высказано предположение о существовании между транскрипцией и трансляцией еще одного важного звена-образования пригодной для трансляции зрелой молекулы мРНК. Этот этап получил название процессинга, или созревания, мРНК. [c.490]

    Геном ретровируса дикого типа представлен двумя идентичными одноцепочечными молекулами РНК, каждая из которых состоит из шести участков длинного концевого повтора (5"-LTR, от англ. long terminal repeat)] некодирующей последовательности пси" необходимой для упаковки РНК в вирусную частицу трех генов, кодирующих структурный белок внутреннего капсида (gag), белок, обладающий функциями обратной транскриптазы и интегразы (pol), и белок оболочки (env) 3 -LTR-последовательности (рис. 21.2). Жизненный цикл ретровируса включает следующие стадии. [c.488]

    В ДНК некоторых прокариот (археобактерии), в ядре и митохондриях эукариот кодирующие области прерываются большими некодирующими ДНК-последовательностями (до 5000 пар нуклеотидов) По предложению У Гилберта (1978) кодирующие области называют экзонами, или доменами, некодирующие — нитронами Например, в генах тяжелой Н-цепи иммуноглобулинов (1д) находится не менее 4 интронов и 5 экзонов, в гене яичного белка (овальбумина)7 интронов и 8 экзонов, из 3,5 биллионов пар нуклеотидов в ДНК гаплоидного генома человека кодирующими являются менее 10% Прерывистость генов у эукариот — явление обычное, хотя известны гены, в которых подобная прерывистость не обнаружена (в генах интерферона, гистонов) [c.161]

    В бактериальных клетках большинство белков кодируется одной непрерывной последовательностью ДНК, которая копируется без изменения с образованием молекулы мРПК. В 1977 г. молекулярные биологи были изумлены, обнаружив, что у больщинства эукариотических генов кодирующие последовательности (названные экзонами), чередуются с некодирующими последовательностями (названными нитронами). Для производства белка весь ген, включая и интроны, и экзоны, транскрибируется в очень длинную молекулу РНК (первичный транскрипт). Перед тем как эта молекула РНК покинет ядро, комплекс ферментов, осуществляющих процессинг РНК, удаляет у нее все последовательности интронов, делая молекулу РНК значительно короче. После завершения этой стадии процессинга РНК, которая носит название сплайсинга РНК, молекула РНК выходит в цитоплазму уже как мРНК и направляет синтез определенного белка (см. рис. 3-13). [c.131]

    Так как большинство генов, кодирующих белки современных митохондрий и хлоропластов, находится в ядерном геноме, можно думать, что в ходе эволюции эукариот значительная часть генов органелл была перенесена в ядерную ДНК. Это позволило бы объяснить, почему некоторые из ядерных генов, кодирующих митохондриальные белки, сходны с генами бактерий. Так, например, у курицы М-концевая аминокислотная последовательность митохондриального фермента супероксиддисмутазы гораздо больше похожа на соответствуюший сегмент супероксиддисмутазы бактерий, чем на К-концевой участок того же фермента, выделенного из цитозоля тех же эукариотических клеток. Еще одним указанием на то, что подобные переносы участков происходили в ходе эволюции, служат обнаруженные в ядерном геноме некодирующие последовательности ДНК, имеющие, вероятно, недавнее митохондриальное происхождение очевидно, что эти последовательности были интегрированы в ядерный геном как балластная ДНК. [c.500]

    Г еномы высших эукариот, где длинные последовательности некодирующей ДНК перемежаются относительно короткими кодирующими участками, представляют собой благодатную почву для интеграции и исключения мобильных элементов. В связи с тем, что на транскрипцию генов влияют и удаленные от них на десятки тысяч нуклеотидных пар участки, можно ожидать, что многие возникшие нри транспозиции изменения генома окажут влияние и на экспрессию генов. И напротив, но-видимому, лишь немногие перестройки приведут к разрушению коротких экзонов, содержащих кодирующие последовательности. [c.246]


Смотреть страницы где упоминается термин Гена последовательности кодирующие и некодирующие: [c.20]    [c.37]    [c.170]    [c.273]    [c.273]    [c.170]    [c.172]    [c.483]    [c.248]    [c.665]    [c.490]    [c.47]    [c.473]    [c.418]    [c.315]    [c.265]    [c.270]    [c.60]    [c.330]    [c.99]    [c.69]   
Генетика человека Т.3 (1990) -- [ c.76 ]




ПОИСК







© 2025 chem21.info Реклама на сайте