Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Регуляция экспрессии генов

    РЕГУЛЯЦИЯ ЭКСПРЕССИИ ГЕНОВ ПУТЕМ АЛЬТЕРНАТИВНОГО СПЛАЙСИНГА [c.182]

    Регуляция экспрессии генов эукариот лежит в основе програ.ммы развития многоклеточных организмов. В начале XX в. благодаря работам Т. Моргана и Э. Вильсона стало очевидным, что развитие программируется генами. Поэтому один из подходов к пониманию закономерностей высокоупорядоченного процесса развития состоит в выявлении генов, контролирующих ключевые стадии развития. [c.212]


    Исследование закономерностей процессинга необходимо для выяснения механиз>юв регуляции экспрессии генов. Рассмотрение этапов процессинга и его вариантов у разных организмов затрагивает также ряд других принципиальных проблем. Оказалось, что молекула РНК и в отсутствие белка может выступать как аутокатализатор, осуществляя благодаря конформационной гибкости молекулы сложную и точную собственную перестройку с образованием новых ковалентных связей. Таким образом, полирибонуклеотиды могут функционировать подобно ферментам. Открытие возможности аутокаталитических превращений полирибонуклеотидов показало, что исследование процессинга РНК имеет прямое отношение к вопросу о пребиотических стадиях эволюции макромолекул. [c.163]

    Современные знания о механизмах регуляции экспрессии генов на посттранскрипционном и посттрансляционном уровнях (см. рис. 14.4) были подробно рассмотрены ранее (см. главы 13 и 14). [c.540]

    Регуляция экспрессии генов [c.962]

    Для полного понимания молекулярных механизмов сложного процесса биогенеза мРНК предстоит решить множество вопросов. В частности, необходимо вьщелить в чистом виде и охарактеризовать белковые факторы, принимающие участие в этой регуляторной системе. Далее следует раскрыть механизмы узнавания промотора, терминации и антитерминации, избирательного метилирования, а также тонкие молекулярные механизмы регуляции сплайсинга. Решение указанных проблем будет, несомненно, способствовать лучшему пониманию сущности механизмов регуляции экспрессии генов эукариотических клеток в норме и при патологии. [c.493]

    Регуляция экспрессии генов. Фитогормональная регуляция экспрессии генов обусловливает такие важнейшие процессы в жизни растительной клети, как дифференцировка и дедифференцировка, деление, рост и адаптация к новым метаболическим условиям. Среднее время фитогормональной регуляции работы генома исчисляется несколькими часами. В то же время растение способно ответить на изменение уровня некоторых гормонов всего за несколько десятков минут. Эти быстрые реакции связаны со способностью фитогормонов регулировать активность уже существующих ферментов растительной клетки. [c.335]

    Геном эукариотических клеток устроен значительно сложнее, чем у прокариот, что определяется большим объемом информации, необходимой для нормальной жизнедеятельности многоклеточного организма, состоящего из специализированных клеток, органов, тканей. Поэтому в ходе эволюции по мере усложнения клетки как правило возрастает масса ДНК в хромосомах и становится более сложной вся система управления и регуляции экспрессией генов. [c.377]

    Существование интронов в эукариотических генах обеспечивает регуляцию экспрессии генов в развитии благодаря альтернативным путям сплайсинга, в основе которых лежит возможность испмьзо-вать разные экзоны одного гена для образования разных мРНК. Кроме того, в нитронах (т. е. внутри гена) могут на.ходиться важные элементы регуляции транскрипции — усилители, нли энхансеры Сангл. enhan ers) см. гл. X). [c.191]


    Ванюшин Б. Ф. Метилирование ДНК у эукариот — новый механизм регуляции экспрессии генов и клеточной дифференцировки//Усп. биол. химии. 1983. Т, 24. С, 170—193. [c.221]

    Основа регуляции транскрипции в случае ДНК-содержащих вирусов эукариот та же, что и у ДНК-содержащих фагов,— взаимное расположение и сила промоторов и терминаторов. Но в эукариотных системах встречаются новые регуляторные элементы, прежде всего энхансеры (см. гл. IX). Кроме того, образование зрелых молекул мРНК у ДНК-содержащих вирусов эукариот обычно связано с разнообразными посттранскрипционными изменениями (процессингом) первичных транскриптов. Это обстоятельство вносит важный вклад в регуляцию экспрессии генов. [c.299]

    Для мн. пре-РНК известны альтернативные пути С., дающие множественные формы зрелой РНК из транскрип-тов одного гена. Это может иметь значение как один из механизмов регуляции экспрессии генов, а также как ср-во увеличения кодирующей емкости генома (экспрессия одного [c.410]

    Принимая во внимание все возрастающий объем биохимической информации, многие разделы пришлось заново написать или существенно переработать например, о структуре и функциях белков и нуклеиновых кислот, регуляции экспрессии генов, молекулярных механизмов биогенеза ДНК и РНК, биосинтеза белка, механизмах регуляции метаболизма и роли гормонрецепторной системы и вторичных внутриклеточных мессенджеров в передаче нервного и гуморального сигналов, механизмах ферментативного катализа, особенностях обмена веществ в нервной ткани (нейрохимия), печени, мышечной и соединительной тканях и др. [c.12]

    Гистоны также являются белками основного характера. В их состав входят лизин и аргинин, содержание которых, однако, не превышает 20—30%. Молекулярная масса гистонов намного больше нижнего предела молекулярной массы белков. Эти белки сосредоточены в основном в ядрах клеток в составе дезоксирибонуклеопротеинов и играют важную роль в регуляции экспрессии генов (см. главы 2 и 3). [c.73]

    В многоклеточных организмах среднее число регуляторных сайтов для одного гена минимум равно пяти положительные регуляторные белки связываются со своими специфическими последовательностями в структуре ДНК (вероятнее всего, посредством водородных связей между амидной группой Глн или Асн и пуриновыми и пиримидиновыми основаниями нуклеотидов). Следует указать еще на один момент, почему эукариотическая клетка использует положительные механизмы регуляции экспрессии генов. Подсчитано, что в геноме человека содержится около 100000 генов, соответственно каждая клетка при отрицательном механизме регуляции могла бы синтезировать 100000 разных репрессоров, причем в достаточных количествах. При положительном механизме регуляции большинство генов в принципе неактивно, соответственно молекула РНК-полимеразы не связывается с промотором и клетка синтезирует ограниченный и избирательный круг активаторных белков, необходимых для инициации транскрипции. [c.538]

    Главная роль процессинга заключается в регуляции экспрессии генов. Процессинг может идти по-разному—различные мРНК могут получаться из одного и того же первичного транскрипта. Недавно обнаружено, что РНК мон ет реализовать процессинг и без участия ферментов. [c.297]

    Университетское руководство по молекулярной генетике, написанное вьщающимися американскими учеными. Книга содержит подробные сведения о структуре и функциях ДНК, РНК и белков репликации и функционировании генома, о транскрипции и трансляции в клетках про- и эукариот регуляции экспрессии генов, технологии рекомбинантных ДНК и др. С помощью схем, рисунков и таблиц авторы самые сложные вопросы излагают ясно и просто. [c.591]

    У высших организмов процессы биосинтеза белка регулируются значительно сложнее. Хотя каждая клетка позвоночного содержит полный геном данного организма, в клетке данного типа экспрессируется только часть структурных генов. Почти во всех клетках высших животньк присутствуют наборы основных ферментов, необходимые для реализации главных путей метаболизма. Однако клетки разных типов, например клетки мышц, мозга, печени, содержат свойственные только им структуры и выполняют только им присущие биологические функции, реализация которых обеспечивается наборами специализированных белков. Например, клетки скелетных мьшщ содержат огромное количество ориентированных миозиновых и актиновых нитей (разд. 14.14), тогда как в печени миозина и актина очень мало. Точно так же клетки мозга содержат ферменты, необходимые для синтеза большого числа различных веществ-медиаторов нервных импульсов, в то время как клетки печени этих ферментов вообще не содержат, Вместе с тем в печени млекопитающих присутствуют все ферменты, необходимые для образования мочевины, тогда как в других тканях этих ферментов нет и они не обладают способностью синтезировать мочевину (разд. 19.15). Кроме того, биосинтез разных наборов специализированных белков должен быть точно запрограммирован в последовательности и времени их появления в ходе строго упорядоченной дифференцировки и роста высших организмов. Пока нам сравнительно мало что известно о регуляции экспрессии генов в эукариотических организмах с их многочисленными хромосомами. Однако сегодня мы располагаем значительной информацией о регуляции синтеза белка у прокариот. К ней мы сейчас и перейдем. [c.954]

    Эукариотические гены одних видов были также клонированы и экспрессировались в клетках других видов. Например, ген, кодирующий tx-цепь гемоглобина кролика, был введен в растущие в культуре мышиные клетки и экспрессировался в них. Внедрение чужеродного гена в эукариотические клетки не всегда, однако, сопровождается его транскрипцией и трансляцией с образованием активного белка. Регуляция экспрессии генов у эукариот пока еще мало изучена (разд. 29.22) во время написания этой книги проводится большое число исследований по выяснению условий экспрессии реком-бинантньк генов в эукариотических клетках. [c.988]


    Учеными уже охарактеризованы десятки генов запасных белков злаков, бобовых и ряда других растений, изучены структура и регуляция экспрессии генов. Исследователи уже клонировали 10 генов гордеинов ячменя, гены а- и Р-глиадинов и глютенина пшеницы, зеинов кукурузы, легу-минов бобовых, пататина картофеля и др. Для некоторых генов определена их нуклеотидная последовательность. [c.66]


Смотреть страницы где упоминается термин Регуляция экспрессии генов: [c.181]    [c.184]    [c.198]    [c.201]    [c.293]    [c.136]    [c.107]    [c.126]    [c.181]    [c.184]    [c.191]    [c.198]    [c.201]    [c.293]    [c.182]    [c.181]    [c.173]    [c.136]    [c.853]    [c.956]    [c.378]   
Молекулярная биология. Структура и биосинтез нуклеиновых кислот (1990) -- [ c.181 , c.198 , c.212 , c.293 , c.302 , c.303 ]

Молекулярная биология (1990) -- [ c.181 , c.198 , c.212 , c.293 , c.302 , c.303 ]




ПОИСК





Смотрите так же термины и статьи:

Регуляция

Регуляция генной экспрессии



© 2025 chem21.info Реклама на сайте