Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Биотехнология в получении источника энергии

    Питательные среды для культивирования микроорганизмов содержат большое количество необходимых компонентов, основным из которых обычно считают тот, который служит микроорганизмам источником углерода н энергии. Это веш.ество или смесь веществ называют субстратом, а все остальные — вспомогательными веществами. Поэтому при рассмотрении сырьевой базы промышленного микробиологического синтеза оценивают доступность, методы получения, свойства и необходимые качественные характеристики тех продуктов или отходов родственных отраслей промышленности, которые в биотехнологии употребляются как субстрат или многокомпонентная смесь, содержащая необходимый клеткам субстрат и, возможно, другие полезные или балластные компоненты. [c.33]


    Повышение цен на традиционные источники энергии (природный газ, нефть, уголь) и угроза их исчерпания побудили ученых обратиться к альтернативным путям получения энергии. Роль биотехнологии в создании экономичных возобновляемых энергетических источников (спиртов, биогенных углеводородов, водорода) чрезвычайно велика. Эти экологически чистые виды топлива можно получать путем биоконверсии отходов промышленного и сельскохозяйственного производства. Перспективно продолжение исследований по усовершенствованию и внедрению процессов производства метана, этанола, созданию на основе микроорганизмов (и ферментов) элементов, эффективно производящих электричество, а также по организации искусственного фотосинтеза, в частности биофотолиза воды, при котором можно получать богатые энергией водород и кислород. [c.204]

    Как видно из рис. 2.1, получение топлива по схеме биомасса— биотехнология основывается на сочетании фотосинтеза, животноводства, кормопроизводства и ферментации с использованием наиболее подходящих организмов. Все это должно быть совмещено с инженерным обеспечением сбора урожая, его перевозки, обработки и получения конечного продукта. Единственным поставщиком энергии в такой системе является солнечный свет (этап фотосинтеза). Соответственно все другие потребности должны быть удовлетворены за счет комбинированных источников энергии (ископаемого топлива, электроэнергии или части самой биомассы). Следовательно, определяющим фактором является отношение количества солнечной энергии, запасенной в конечном продукте, к энергии, затраченной на его [c.35]

    До тех пор, пока всеобъемлющий термин биотехнология не стал общепринятым, для обозначения наиболее тесно связанных с биологией разнообразных технологий использовали такие названия, как прикладная микробиология, прикладная биохимия, технология ферментов, биоинженерия, прикладная генетика и прикладная биология. Если не принимать в расчет производства мыла, то первая же из числа возникших технологий такого рода стала предшественницей прикладной микробиологии. Наши предки не имели представления о процессах, лежащих в основе таких технологий. Они действовали скорее интуитивно, но в течение тысячелетий успешно использовали метод микробиологической ферментации для сохранения пищи (например, при получении сыра или уксуса), улучшения вкуса (например, хлеба и соевого соуса) и производства спиртных напитков. Пивоварение до сих пор остается наиболее важной (в денежном исчислении) отраслью биотехнологии. Во всем мире ежегодно производится около 10 литров пива стоимостью порядка 100 млн, фунтов стерлингов. В основе всех этих производств лежат реакции обмена веществ, происходящие при росте и размножении некоторых микроорганизмов в анаэробных условиях. В конце XIX в. благодаря трудам Пастера были созданы реальные предпосылки для дальнейшего развития прикладной (технической) микробиологии, а также в значительной мере и биотехнологии. Пастер установил, что микробы играют ключевую роль в процессах брожения, и показал, что в образовании отдельных продуктов участвуют разные их виды. Его исследования послужили основой развития в конце XIX и начале XX вв. бродильного производства органических растворителей (ацетона, этанола, бутанола и изопропанола) и других химических веществ, где использовались разнообразные виды микроорганизмов. Во всех этих процессах микробы в бескислородной среде осуществляют превращение углеводов растений в ценные продукты. В качестве источника энергии для роста микробы в этих условиях используют изменения энтропии при превращениях веществ. Совсем иначе обстоит дело в аэробных процессах при контролируемом окислении химических веществ до углекислого [c.11]


    В литературе по этим вопросам имеется обширная информация, но рекламный характер большинства публикаций не позволяет пока достоверно судить о технологической сущности новых процессов гидролиза, поэтому они не отражены в настоящем пособии. Необходимо подчеркнуть, что растительность как единственный источник возобновляемого сырья, образующегося ежегодно в крайне широких масштабах за счет утилизации энергии солнца, углекислоты и воды, должна в принципе служить основой получения субстратов для микробиологического синтеза, который характеризуется высокими расходными коэффициентами по сырью. Можно полагать, что в недалеком будущем биотехнология будет базироваться на углеводном сырье растительного происхождения, чему в немалой степени должно способствовать и то обстоятельство, что подавляющее большинство промышленных штаммов-продуцентов быстро и эффективно растут на углеводных средах, предпочитая их многим другим источникам углерода. [c.59]

    Поскольку солнечный свет является мощным источником энергии, а количество имеющейся биомассы ограничено, некоторые биотехнологи, работающие над проблемами энергетики, занялись разработкой двух проблем, решение которых позволило бы повысить эффективность использования солнечной энергии. Во-первых, они пьггаются найти практические способы повышения эффективности конверсии солнечного света в биомассу, например путем выращивания водорослей при высокой концентрации углекислого газа и ограниченной освещенности в биореакторах со строго контролируемыми условиями роста. Во-вторых, они изучают возможность получения водорода путем расщепления воды при участии фотосистемы фотосинтезирующих организмов, т.е. путем биофотолиза. Технически проще всего получать водород, используя интактные сине-зеленые водоросли или процессы ферментации (брожения). Надо сказать,, однако, что если биотехнология всерьез намерена внести в будущем весомый вклад в производство энергии, то ей придется решить нетривиальную техническую задачу на основе биофотолиза разработать сложный реактор, включающий упорядоченные стабильные биофотосистемы.  [c.22]

    Комплексный подход в планировании энергетики на возобновляемых ресурсах. Возобновляемые источники энергии являются неотъемлемой частью окружающей нас среды, поэтому как их изучение, так и использование не может ограничиваться рамками одной научной дисциплины или задачи. Часто исследования охватывают область от промышленной биотехнологии до электроники и процессов управления. Использование ВИЭ должно быть многовариантным и комплексным, что позволит ускорить экономическое развитие регионов. Например, хорошей базой для использования ВИЭ представляются агропромьгшленные комплексы, где отходы животноводства и растениеводства могут служить сырьем для получения метана, а также жидкого и твердого топлива, производства удобрений. [c.297]

    Достижения биогехнологии позволяют в принципе превратить солнечную энергию, запасенную в биомассе растений, в исходное сырье для химической промышленности. Надо еще учесть, что в настоящее время мы находимся в самом начале развития этой области науки и техники. Тем не менее уже имеются примеры успешного использования ферментов (биохимических катализаторов с высокой избирательностью действия) для получения ряда веществ. Сейчас методами биотехнологии в широких масштабах получают шесть важных химических соединений, включая этанол и уксусную кислоту. Они, конечно, сейчас болс е дороги, чем получаемые из нефти. Но со временем цена нефти растет, а биотехнологические способы становятся более конкурентоспособными. Весьма вероятно, в недалеком будущем основой большой химии будут нефть, уголь и биомасса. Конкретный вклад каждого из источников будет опред, 1яться экономической ситуацией в каждой конкретной стране. [c.229]


Смотреть страницы где упоминается термин Биотехнология в получении источника энергии: [c.58]   
Биология Том3 Изд3 (2004) -- [ c.82 , c.83 ]




ПОИСК





Смотрите так же термины и статьи:

Биотехнология



© 2025 chem21.info Реклама на сайте