Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Системы коллоидные методы получения

    Дисперсные системы и их классификация. Методы получения и очистки коллоидных растворов [c.492]

    Коллоидные растворы занимают по степени дисперсности промежуточное положение между истинными растворами или, иначе говоря, молекулярно- и ионно-дисперсными системами и грубодисперсными системами. Поэтому они могут быть получены либо путем ассоциации (конденсации) молекул и ионов истинных растворов, либо раздроблением частиц грубодисперсных систем. Методы получения коллоидных растворов представлены двумя группами методы конденсации и дисперсионные методы. В отдельную группу может быть выделен метод получения коллоидных растворов с помощью пептизации. [c.294]


    Коллоидные системы занимают, как мы видели, промежуточное положение между грубодисперсными и молекулярными системами. Поэтому к получению их ведут два пути либо дробление крупных кусков вещества до требуемой дисперсности, либо объединение молекул или ионов в агрегаты коллоидных размеров. В соответствии с этим существуют диспергационные и конденсационные методы получения дисперсных систем. [c.20]

    КОЛЛОИДНЫЕ СИСТЕМЫ, ИХ СВОЙСТВА И МЕТОДЫ ПОЛУЧЕНИЯ [c.132]

    КОЛЛОИДНЫЕ СИСТЕМЫ И МЕТОДЫ ПОЛУЧЕНИЯ ЛИОФОБНЫХ КОЛЛОИДОВ [c.292]

    По степени дисперсности углеродные компоненты наполнителя делят на коллоидно- и грубодисперсные системы. Коллоиднодисперсные системы обладают наиболее высокой удельной поверхностью благодаря малым размерам частиц (10—10 А). Малые размеры частиц и большая их удельная поверхность (20—. 300 м /см ) обеспечиваются специальными методами получения нефтяного углерода из газообразного и жидкого сырья при высоких температурах в газовой фазе. К таким нефтяным углеродам относят сажу. По принятому в нашей стране стандарту (ГОСТ 7885—77), сажи в зависимости от их влияния на прочностные свойства и износостойкость резины существенно различаются по активности. [c.80]

    Здесь уместно указать, что наряду с типичными необратимыми и обратимыми системами, согласно классификации Зигмонди и Фрейндлиха, существуют и промежуточные системы, которые трудно отнести к какому-нибудь одному из обоих классов. Это, например, золи гидроокисей некоторых металлов А1(0Н)з, Ре(ОН)з, 5п(ОН)4. Исследование с помощью оптических методов указывает на присутствие в этих системах коллоидных частиц (агрегатов молекул). Имеются и другие основания считать эти системы гетеро-генными. Вместе с тем эти системы обратимы, могут быть получены с достаточно большой концентрацией дисперсной фазы и менее чувствительны к электролитам, чем типичные лиофобные системы. Такие свойства этих систем обычно объясняют исключительно большой гидратацией содержащихся в них частиц. Однако в последнее время ряд исследователей стали считать, что в этих системах в зависимости от способа получения дисперсная фаза может находиться как в виде коллоидных частиц, так и в виде макромолекул. Природа этих растворов до сих пор окончательно не ясна. К этому вопросу мы еще возвратимся в гл. IX и XIV. [c.27]

    Дело в том, что дисперсная фаза большинства коллоидных систем по своим химическим свойствам является практически нерастворимой в данной дисперсионной среде. Для получения той или иной системы прибегают к искусственным приемам получения коллоидов. Наиболее распространенный метод получения — это такая обменная реакция, при которой два легко растворимые вещества, вступая в реакцию, образуют третье, в данной среде практически нерастворимое. В качестве примера такой обменной реакции может быть приведено образова- [c.265]


    Наиболее сложными кажутся на первый взгляд термодинами-ческие условия получения коллоидных систем методом конденсации. Может даже показаться, что золи, синтезированные, например, в результате химической реакции, образуются самопроизвольно и, следовательно, их получение сопровождается уменьшением свободной энергии системы. Однако не следует забывать, что при химической реакции свободную энергию системы следует сравнивать не со свободной энергией растворов исходных компонентов реакции, а со свободной энергией полученной системы с выкристаллизовавшейся дисперсной фазой- При этом причины неустойчивости коллоидных растворов, полученных методом конденсации, становятся совершенно ясными. [c.240]

    Методы получення и очистки коллоидных растворов. Для получения коллоидных растворов необходимо 1) достичь коллоидной степени дисперсности 2) подобрать дисперсионную среду, в которой нерастворимо вещество дисперсной фазы 3) подобрать третий компонент — стабилизатор, сообщающий коллоидной системе устойчивость. [c.494]

    По размеру частиц золи занимают промежуточное положение между истинными растворами и грубодисперсными системами — порошками, суспензиями, эмульсиями. Поэтому все методы получения коллоидных систем можно разбить на две основные группы 1) диспергирование— дробление крупных частиц грубодисперсных систем до коллоидной дисперсности 2) конденсация — соединение атомов, ионов или молекул в более крупные частицы (агрегаты) коллоидных размеров. [c.181]

    Дробление частиц дисперсной фазы при получении систем методом механического диспергирования, как правило, проводят в водной среде. Однако водные системы, если их частицы смачиваются органическими жидкостями, легко можно перевести в суспензии с неводной средой. Так, измельчение пигментов обычно ведут в воде, а затем, не высушивая, влажный пигмент смешивают с маслом, при этом гидрофобные частицы пигмента переходят в масло. Интересно, что для высокодисперсных коллоидных систем, полученных методом конденсации, этот способ замены среды обычно непригоден, так как при смешении гидрозоля с органической жидкостью частицы коллоидных размеров, как правило, собираются на поверхности раздела жидкостей. [c.252]

    В учении о фазовых равновесиях области метастабильных состояний часто именуются областями расслоения или разделения на две фазы. В действительности сами процессы разделения на две фазы гомогенных систем, попавших в эти области, могут протекать чрезвычайно медленно. В особенности затруднено разделение на две фазы стеклообразных гомогенных растворов. Правильнее поэтому говорить лишь о метастабильных состояниях, т. е. об относительной термодинамической неустойчивости этих систем. Это необходимо еще и потому, что образование новой фазы из равновесных стабильных систем невозможно. Коллоидные частицы новой фазы могут возникать только в пересыщенных, метастабильных системах. Отчетливое понимание этого обстоятельства является основой для целеустремленного использования конденсационных методов получения дисперсных систем и дисперсных структур, в частности высокомолекулярных. [c.59]

    Золи золота [43] представляют чрезвычайно интересный объект для исследования механизма образования коллоидных частиц, так как, согласно существующим представлениям, коллоидные частицы этих золей являются кристаллическими, а одним из основных методов получения золей золота является введение в раствор зародышей кристаллизации. Казалось бы, что в этом случае уже не могут образоваться коллоидные частицы аморфной структуры, как это происходит во всех описанных выше золях. Однако исследование процесса образования коллоидных частиц золота показало, что он протекает так же, как и в других коллоидных системах. [c.174]

    Систематическое изучение коллоидных систем было начато английским ученым Т. Грэмом в 1861 г. Этот год принято считать годом рождения коллоидной химии. Грэм обобщил выполненные до него исследования и сформулировал основные представления о коллоидных системах. Ему принадлежит и введение термина коллоид . Изучая диффузию веществ в растворах, Грэм отметил медленное протекание диффузии частиц коллоидных растворов и их неспособность проникать через мембраны в отличие от молекул обычных растворов. Ои разработал методы получения коллоидных растворов и показал, что нерастворимые вещества при определенных условиях могут быть переведены в состояние раствора (золя), по внешним признакам почти не отличающегося от истинных растворов. Сопоставляя обычные растворы с золями, Грэм пришел к выводу о необходимости разделения веществ на кристаллоиды и коллоиды . Однако он принял коллоиды за особый класс веществ, хотя и выражал сомнение, предполагая, что частица коллоида построена из более мелких кристалликов и именно такая сложная структура может быть причиной коллоидальности. [c.19]

    КОЛЛОИДНЫЕ СИСТЕМЫ И МЕТОДЫ ИХ ПОЛУЧЕНИЯ [c.302]

    Описанные методы получения коллоидных систем основаны на явлениях, при которых осуществляется перевод в коллоидное состояние данного вещества, находившегося ранее в системе в неколлоидном состоянии. Эти методы объединяются общим названием методы физической конденсации. [c.315]


    Эмульсии относят к коллоидным системам методы их получения те же, что и методы получения коллоидных систем. [c.30]

    Глава I. Коллоидные системы, их свойства и методы получения. ..................... [c.297]

    Однако физико-химические методы получения дисперсий менее технологичны, чем химические, поэтому применение их целесообразно лишь в тех случаях, ког,да в процессе синтеза полимера не образуется коллоидная система. [c.9]

    Продолжается активное развитие ряда фугих направлений коллоидно-химической науки и смежных областей знания учения об аэрозолях (играющего важную роль в создании методов защиты окружающей среды от загрязнения) физикохимии электроповерхностных явлений, включая коллоидно-химические аспекты борьбы с коррозией термодинамики поверхностных явлений и фазовых равновесий в дисперсных системах, теории электрокинетргаеских и оптических свойсгв коллоидных дисперсий изучения коллоидных свойств дисперсий ВМС (включая методы получения полимерных покрытий, особенности латексной полимеризации) исследований специфических коллоидно-поверхностных эффектов в кристаллах особенностей смачивания и других поверхностных явлений в высокотемпературных системах. Энергично развивается физико-химическая механика природных дисперсных систем (глинистые минералы, уголь, торф и др.) конструкционных и строительных материалов (стали, сплавы, керамика, материалы на основе минеральных вяжущих веществ) контакта твердых поверхностей, трения, смазывающего действия. [c.14]

    Для изучения связи размеров и числа надмолекулярных частиц в коллоидных системах используют метод спектра мутности. В основу метода положены результаты теории Ми [50], получившие развитие в работах Кленина с сотрудниками [51]. Достоинством метода является возможность получения информации с помощью простой экспериментальной техники, когда ограничены предварительные сведения о струк- [c.83]

    Иордис в 1902 г. при изучении химических методов получения различных золей пришел к выводу, что состав коллоидных мицелл не соответствует тем веществам, которые должны образоваться в результате предполагаемой реакции. Иордис один из первых отметил, что дисперсная фаза золя всегда содержит в качестве примеси вещества, из которых она была получена. При удалении этих веществ, например, путем диализа, золь теряет устойчивость. На основании этого Иордис правильно считал, что примеси не безразличны для коллоидной системы, Согласно Иордису, коллоидная частица представляе г собой комплексное соеди-яение сложного состава. [c.240]

    В это же время М. Фарадей разработал методы получения золей металлов (например, Аи, Ag) и показал, что коллоидные частицы в них состоят из чистых металлов. Таким образом, ко второй половине XIX в. сложился ряд представлений о жидких коллоидных растворах и других дисперсных системах. Обобщение в 60-х годах XIX в. этих взглядов, формулировка основных коллоидно-химических идей и введение термина и понятия коллоиды принадлежат Грэму. Изучая физико-химические свойства растворов, в частности диффузию, он обнаружил, что вещества, не кристаллизующиеся из раствора, а образующие студневидные аморфные осадки (АЬОз, белки, гуммиарабик, клей) обладают весьма малой скоростью диффузии, по сравнению с кристаллизующимися веществами (Na I, сахароза и др.), и не проходят через тонкие поры, например пергаментные мембраны, т. е. не диализируют, по терминологии Грэма. Основываясь на этом свойстве, Грэм разработал метод очистки коллоидов от растворенных молекулярных веществ, названный им диализом (см. главу II). После того, как был найден способ получения чистых объектов исследования, началось бурное развитие коллоидной химии. [c.18]

    Дальнейшая разработка метода молекулярных пучков, предложенного Семеновым и Шальниковым [1], а также Богданди, Бемом и Поланьи [2], привела Рогинского и Шальникова [3] к открытию нового метода получения коллоидальных систем совместной конденсацией на охлажденной жидким воздухом поверхности паров компонентов системы. Смешение этих компонентов в состоянии крайне высокой степени дисперсности приводит, по крайней мере в первой стадии процесса — до плавления полученного коллоидального льда ,— к высокой дисперсности системы, а то обстоятельство, что весь опыт протекает в высоком вакууме, позволяет получать и изучать коллоиды, которые хотя и были получены раньше [4—6], но обладали очень малой продолжительностью жизни и немедленно разлагались при соприкосновении с воздухом, что делало невозможным изучение их коллоидных, электрохимических, оптических и прочих свойств. [c.149]

    Одним из методов получения гелеобразных топлив с высокой теплотворной способностью может быть создание суспензий частиц алюминия, бора, лития, бериллия и других веществ в нефтепродуктах. Другим путем получения дисперсий металлов может быть создание коллоидных растворов. При получении коллоидных растворов в углеводородной среде должны быть диспергированы твердые частицы с размером 1 —1 10 см. В этом случае диспергированное вещество и дисперсионная среда составляют коллоидную систему как едЕное целое. Однако получение таких коллоидных растворов высокой концентрации является трудной задачей, поэтому проще получение суспеншй порошкообразных металлов в углеводородах предотвращение оседаний порошков достигается повышением вязкости среды. В этом случае сравнительно грубодисперсные частицы твердых веществ с размерами 0,05—0,01 мм (порошок алюминия) или 0,0005—0,020 мм (пудра алюминия, бериллия) не являются непосредственно частью коллоидной системы, а представляют наполнители коллоидного раствора [5]. [c.91]

    Современная коллоидная химия развивается главным образом в двух важнейших направлениях во-первых, в направлении изучения свойств дисперсных фаз и механизма их взаимодействия с различными дисперсионными средами для разработки теории лиофильности и, во-вторых, в направлении развития физико-химической механики, изучающей процессы структурообразования в дисперсных системах и методы управления их механическими свойствами. Следует кратко остановиться на некоторых достижениях и задачах этих двух направлений применительно к таким объектам коллоидной химии, как дисперсные, главным образом, глинистые минералы, которые представляют большой интерес для получения катализаторов, адсорбентов, наполнителей, высококачественных бурювых растворов, строительных материалов и т. д. [1—4]. .  [c.3]

    Мы остановились на рассмотрении этих примеров, чтобы, с одной стороны, показать всю сложность проблемы получения коллоидных систем и трудность вследствие этого описания строения их мицелл, а с другой стороны, дать ясное представление о возможных путях использования в промышленности методов получения коллоидов. К лиофобным системам следует отнести и эмульсии, устойчивость которых также связана только с активностью стабилизатора к водной фазе. Рассматривая всю совокупность изложенных фактов, мы приходим к выводу, что в настоящее время хотя бы в практических целях следует пользоваться общим правилом заряд ядра коллоидной частицы определяется родственными ионами или группами. Это чисто эмпирическое правило позволяет достаточно хорошо ориентироваться в этой области независимо от сложности состава ядра коллоидной частицы. Пользуясь им, можно большей частью предсказать все основные свойства кол-.яоидных часиц. Например, частица иодистого серебра в избытке AgNOз будет иметь положительный заряд  [c.197]

    Согласно представлениям, излошепным выше, получение кристаллических коллоидных частиц рассматривается как особый случай кристаллизации из пересыщенных растворов. Однако Каргин с сотрудниками установили, что в очень многих случаях получения коллоидных систем конденсационными методами дисперсная фаза возникает сначала в виде относптельио больших, обычно сферических аморфных образований. Затем эти образования кристаллизуются и распадаются па более мелкие частицы в результате возникающих прп кристаллизации напряжений. На скорость кристаллизации оказывает весьма сильное влияние температура, при которой проводят синтез коллоидной системы конденсационным методом.— Прим. ред. [c.15]


Смотреть страницы где упоминается термин Системы коллоидные методы получения: [c.16]    [c.53]    [c.84]    [c.182]    [c.46]   
Курс коллоидной химии 1974 (1974) -- [ c.21 ]




ПОИСК





Смотрите так же термины и статьи:

Диспергационные методы получения лиофобных коллоидных систем

Дисперсионные методы получения коллоидных систем

Дисперсные системы и их классификация. Методы получения и очистки коллоидных растворов

КОЛЛОИДНАЯ ХИМИЯ Методы получения коллоидных систем Общие условия получения коллоидных систем

КОЛЛОИДНАЯ ХИМИЯ ОБЩАЯ ХАРАКТЕРИСТИКА КОЛЛОИДНЫХ СИСТЕМ МЕТОДЫ ИХ ПОЛУЧЕНИЯ

Коллоидная химия Коллоидные системы и методы их получения Общая характеристика коллоидных систем и методы их получения

Коллоидная химия Коллоидные системы, их свойства и методы получения

Коллоидные системы получение

Коллоидные системы, их свойства и методы их получения

Конденсационные методы получения коллоидных систем

Методы получения коллоидных систем Методы диспергирования

Получение коллоидных систем методами диспергирования

Система получение

Системы коллоидные



© 2025 chem21.info Реклама на сайте