Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Работа с веществами, неустойчивыми на свету

    Обычно для наблюдения за характером горения ЖВВ применяют киносъемку сбоку через прозрачные стенки сосуда. В работе [178] был применен метод киносъемки с торца через слой горящей жидкости. Для этого к стеклянной трубке приклеивали плоское прозрачное дно и пробирку помещали на призму с углом 45°, через которую и вели съемку (см. рис. 101). Всю сборку монтировали в бомбе постоянного давления фотографирование производили скоростной кинокамерой. Были исследованы два вещества — нитрогликоль и дигликольдинитрат, для которых критические давления возникновения неустойчивого горения равны соответственно около 15 и 54 атм (в пробирке диаметром 6 мм). Так как съемка производилась в собственном свечении, преломление света на поверхности жидкости вскрывало ее структуру. На рис. 115, а приведены типичные кадры (I—J0) киносъемки [c.245]


    За редким исключением некоторых растительных масел, где доля ацетиленов может достигать десятков процентов, эти вещества относятся к минорным метаболитам. Их содержание по отношению к сухой массе растительного материала обычно составляет Соединения с более чем одной тройной связью очень неустойчивы. Видимый свет индуцирует их быструю полимеризацию в окрашенные ароматические полимеры. Это создает значительные трудности при работе с ними. [c.26]

    По первой схеме (рис. 513, а) аналитическая ячейка монтируется непосредственно в месте выхода элюата из колонки. В случае окрашенных веществ ячейка представляет собой фотоэлемент, в случае веществ с характеристической абсорбцией в ультрафиолетовом свете — монохроматор с фотоумножителем (например, шведский прибор Увикорд ), а в случае меченых веществ — счетчик Гейгера — Мюллера. Так как весь поток элюата проходит через ячейку, то некоторые неустойчивые вещества при этом могут разлагаться (в особенности при облучении ультрафиолетовым светом). По другой схеме (рис, 513, б) анализируемые бесцветные вещества Должны сначала прореагировать с соответствующим колориметрическим реагентом, который впускают в элюат при помощи насоса. На этом принципе был разработан метод для полного автоматического анализа аминокислот в микроколичествах [121]. В большинстве случаев эта схема непригодна для препаративной работы. [c.564]

    Первый метод, разработанный Дикстра и Momepoiwбыл использован только для получения аллнлгидроперекиси. Аллил-метансульфонат обрабатывали перекисью водорода в присутствии едкого кали, однако получаемое вещество было настолько неустойчиво, что работу приходилось проводить в химически инертной стеклянной посуде при красном свете. Гидроперекись, очищенная с помощью газо-жидкостной хроматографии, оказалась весьма легко взрывающим и разлагающимся веществом. [c.64]

    Этот цикл работ безусловно является выдаюш,имся достижением Института химической физики. В исследования детонации включались и другие учреждения, среди которых особенно нужно отметить Сибирский институт гидродинамики [40]. Появились и первые, еще не окончательные теоретические расчеты неустойчи вости [41—43]. Среди них хочу отметить работу [43], в которой показано, что классический режим может быть неустойчив и относительно одномерных возмущений. Идеи спина и неустойчивости детонации (как и идеи теплового взрыва и горения) оказали влияние и на исследование взрывчатых веществ. В работах Дремина и сотр. [44—46] обнаружена сложная структура детонации во взрывчатых веществах, показано влияние этой структуры на условия затухания детонации. Кормер, Синицын, Юшко вместе с автором [47] разработали методику исследования отражения света (постороннего источника) от поверхности ударных и детонационных волн в конденсированных веществах. Эта методика чувствительна к искривлениям и пегладкости волны вплоть до самых малых масштабов, порядка длины световой волны. Ударные волны оказались весьма гладкими в определенных условиях удалось наблюдать [48] и гладкий фронт детонационной волны. [c.585]


    С. В. Лебедев в своей магистерской работе выявил общие закономерности процессов полимеризации органических соединений. Продолжая в этом направлении исследования А. М. Бутлерова и А.Е. Фаворского, С. В. Лебедев в самом начале монографии писал ...Полимеризация, как процесс направляющий частицы к более устойчивым формам, широко распространена в области органических соединений. Не боясь впасть в преувеличение, можно сказать, что большинство ненасыщенных органических соединений при тех или иных условиях может полимеризоваться одни вещества в силу условий, которые в настоящее время не поддаются учету, оказываются настолько неустойчивыми, что процесс полимеризации совершается самопроизвольно другие, для того, чтобы этот процесс мог осуществиться, требуют воздействия света, высокой температуры или таких энергичных агентов, как серная кислота, фтористый бор, безводный хлористый цинк ([142], стр. 1). С. В. Лебедев показал, что в жестких условиях полимеризуются и низшие представители олефинов. На основе своих обширных опытных данных и анализа литературных источников С. В. Лебедев разработал научную классификацию полимеризации непредельных углеводородов. Он разделил полимеризацию углеводородов на пять типов типы стирола, стильбена, ацетилена, аллена и тип дивинила. Рассмотрев каждый тип в отдельности, С. В. Лебедев основное свое внимание уделил типу дивинила, т. е. системе с сопрян енными двойными связями, которая показывает максимальную склонность к самопроизвольной полимеризации при комнатной температуре. [c.108]


Смотреть страницы где упоминается термин Работа с веществами, неустойчивыми на свету: [c.555]   
Смотреть главы в:

Лабораторная техника органической химии -> Работа с веществами, неустойчивыми на свету


Лабораторная техника органической химии (1966) -- [ c.642 ]




ПОИСК







© 2022 chem21.info Реклама на сайте