Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионная сила в динамических условия

    Сорбция белков наиболее интенсивна в бессолевых растворах. Повышение концентрации нейтрального электролита уменьшает их сорбируемость. В динамических условиях это приводит к уменьшению объема элюции (рис. 7). При pH 7,0, 1° С и в присутствии 0,10 М КС1 не происходит десорбции инсулина с ДЭАЭ-целлюлозы. Для десорбции других белков могут быть достаточны растворы с меньшей ионной силой. [c.217]


    Исследования структуры полимера (СО) в растворе показали, что эта молекула может существовать в одной из двух альтернативных форм, а именно в правой В-форме или левой 2-форме. Эти две формы переходят друг в друга при изменении ионной силы раствора или катионов, нейтрализующих отрицательный заряд на фосфодиэфирном каркасе. Природные молекулы ДНК в основном существуют в правой В-форме, если они не содержат последовательностей типа (ОС) . Однако если такие последовательности входят в состав ДНК, то эти участки при соответствующих условиях могут переходить в 2-форму. Возможность такого перехода указывает на то, что две цепи в двойной спирали ДНК находятся в динамическом состоянии и могут раскручиваться друг относительно друга, переходя из правой формы в левую и наоборот. Ясно, что молекулы ДНК для этого должны быть довольно лабильны и допускать конформационные превращения. Биологические следствия такой лабильности структуры ДНК пока не вполне понятны. Специфичные к 2-ДНК антитела реагируют с определенными участками гигантских хромосом клеток слюнных желез дрозофилы, что свидетельствует о том, что ДНК в хромосомах существует в обеих формах (рис. 4.17). [c.115]

    ИСЭ весьма удобны для измерений в потоке, поскольку соответствующая измерительная техника и операция обработки сигнала просты, измеряемый сигнал практически не зависит от скорости потока, линейный динамический диапазон достаточно широк, влияние температуры на результаты не столь сильно выражено и измерения селективны (высокая селективность ИСЭ, правда, является недостатком при их использовании в хроматографии). Условия измерения легко регулируются, и часто достаточно лишь поддерживать постоянными ионную силу и pH измеряемого раствора. ИСЭ с твердыми мембранами, как правило, обладают лучшими характеристиками работы в потоке, чем жидкостные мембранные электроды и газочувствительные электроды, так как у твердофазных электродов быстрее отклик и они механически прочнее. Наиболее серьезной проблемой при работе в таких условиях является пассивация электродов при измерениях в некоторых средах, например в биологических жидкостях или в поверхностных и сточных водах. [c.142]

    Разработаны оптимальные условия и принципиальные технологические схемы сорбции амилазы из культуральной жидкости силикагелем в динамических и статических условиях. Приведен механизм сорбции ферментов ионитами. Показано, что сорбция может протекать за счет поверхностно-молекулярного взаимодействия без ионного обмена, а также за счет сил Ван-дер-Ваальса в сочетании с ионообменным процессом и путем так называемой сорбции высаливанием (силикагель, крахмал). Возможна также сорбция ферментов способом гель-фильтрации с одновременным взаимодействием с матрицей молекулярного сита (сефадекс А-50). [c.116]


    Рассмотрим ионную систему, состоящую из двух фаз, разделенных плоской поверхностью. В силу условия электронейтраль ности можем охарактеризовать состав каждой фазы набором нейтральных компонентов, в число которых могут входить как электролиты, так и вещества, не способные диссоциировать на ионы. Пусть фаза (а) содержит всего с, а фаза (Р)—/ нейтральных компонентов. В случае идеально поляризуемого электрода соприкасающиеся фазы неспособны к обмену веществом, но можно предположить, что поверхность разрыва между фазами включает в себя все компоненты системы. Часть компонентов, способных переходить только в фазу (а), обозначим индексами / и f, другую часть компонентов, способных переходить только фазу (р),— индексами г я 1 (второй индекс понадобится при двойных операциях). В этом случае поверхностный слой можно условно разделить на две части, каждая из которых находится в динамическом равновесии с прилегающей фазой. Хотя поверхностный слой в целом электронейтрален, его части, взятые по отдельности, могут иметь электрические заряды. Поэтому составы этих частей нельзя определить заданием только нейтральных компонентов. Проще всего предположить, что в части поверхностного слоя, прилегающей к фазе (а), помимо с нейтральных компонентов, определяющих состав фазы, присутствует в избытке (с+1)-ый заряженный компонент, обусловливающий заряд этой части. Точно так же заряд другой части поверхностного слоя обусловливается присут- [c.240]

    ИОНОВ И гидроксильных групп ОН в растворе. Добавление нитрата серебра в дисперсную среду положительно заряженных частиц Agi приводит к появлению эквивалентного количества ионов N0 или противо-ионов. Наличие заряженных частиц и противвионов приводит к формированию вблизи поверхности двойного электрического слоя. Его не следует представлять в виде некоторой фиксированной структуры (типа обкладок конденсатора), поскольку он формируется в динамических условиях под воздействием электростатического взаимодействия (притяжения) и диффузии из раствора с постоянной концентрацией ионов. Эти противоположно направленные процессы и приводят к образованию характерного размытого распределения противоионов, показанного на рис. 6.9, а (по направлению от поверхности к раствору плотность зарядов падает). Это распределение по характеру напоминает распределение по высоте плотности в атмосфере в поле силы тяжести. При больших электростатических силах ширина распределения уменьшается Распределение-ионов разного знака в диффузном слое можно количественно выразить с помощью электрического потенциала двойного слоя. Введем координату х, направленную от поверхности сф)ерической частицы (рис. 6.9, ). Примем, что в точке х = >, которая соответствует стандартному значению потёнциала, ц = 0. Обозначим потенциал при л = 0 (т.е. на частице), называемый поверхностным потенциалом, фд. Уравнение Пуассона, связывающее дивергенцию градиента электрического потенциала в данной точке с плотностью заряда в этой же точке, имеет следующий вид  [c.213]

    В последнее время в кз[честве противоизносных присад0(К получили широкое распространение так называемые полимеры трения [100]. Их особенностью является то, что они вступают в реакцию полимеризации на вновь образуемых металлических поверхностях под воздействием локальных температур и давлений с образованием тонких полимерных пленок с высокими когез.ионными силами. В динамических условиях такие пленки непрерывно образуются и изнашиваются, однако поверхность металла экранирована ими все время. В отличие от обычных ПАВ полимеры трения ликвидируют избирательный перенос и выступают в зоне трения не только как металлорганичеокая, а в большей степени как самостоятельная органическая фаза. [c.105]

    Изложенные выше результаты нельзя объяснить в рамках простой теории, однако они позволяют получить общие представления о механизме. Очевидно, что связь молекул газа с поверхностью вызывается скорее физическими, чем химическими силами, и поэтому пе наблюдается существенных различий в поведении инертных газов и таких газов, как кислород и азот. Однако наблюдаемые величины энергий связи много больше тех, которые могут быть обусловлены просто силами Ван-дер-Ваальса. В случае металлов наиболее вероятно, что ионы, обладающие кинетической энергией, проникают в глубь самого металла на несколько атомных слоев и, таким образом, захватываются кристаллической решеткой. (Юнг [4] показал, что ироникновение ионов водорода и гелия в кристаллическую решетку алюминия увеличивается приблизительно линейно с ростом энергии в интервале от 1 до 10 кэв. При энергии порядка 1 кэв они проникают на глубину, примерно равную 10 мм, что соответствует 50 атомным слоям. Поэтому вполне допустимо предположение о том, что в описанных выше опытах ионы, обладающие энергией порядка 1 кэв, проникают в глубь металла на несколько атомных слоев.) Замена одного адсорбированного слоя другим при последующей бомбардировке ионами (рис. 4) указывает на то, что ион, проникающий в кристаллическую решетку, способен выбить предварительно адсорбированную молекулу, находящуюся в непосредственной близости. Таким образом, при продолжительной бомбардировке в конце концов создаются условия динамического равновесия, когда скорости адсорбции и десорбции становятся равными. Наблюдаемое изменение этого равновесия в сторону увеличения адсорбции пропс- [c.541]


    Движение любого отдельного вида ионов через мембранные каналы происходит за счет энергии электрохимического градиента данного иона. Этот градиент образуют две составляющие градиент напряжения на мембране и градиент концентрации иона. Когда силы, создаваемые обоими градиентами, точно уравновешивают друг друга, электрохимический градиент равен нулю, так же как и суммарный ток данного иона через мембрану (рис. 18-8). Состояние динамического равновесия количественно описывается простой формулой-з)ра нениел< Нернста. Если разность потенциалов между двумя сторонами мембраны обозначить V, а внутреннюю и наружную концентрации ионов-соответственно С и с , то суммарный ток иоиов через мембрану будет равен нулю при условии, что [c.78]

    Внешний слой находится в динамическом равновесии с разделяемым раствором при изменении определяющих факторов его характеристики изменяются, приходя в соответствие с новыми условиями проведения процесса разделения. Например, при повышении концентрации дисперсной добавки и рабочего давления толщина слоя увеличивается. Разделение ионов происходит именно во внешней части этого слоя (удерживаемой силами Ван-дер-Ваальса), который имеет достаточно стабильную структуру. Это подтверждается, в частности, опытами по изучению влияния гидродинамических условий на устойчивость мембранообразующего слоя. С увеличением скорости течения раствора проницаемость резко возрастает даже в случаях, когда осмотические давления малы по сравнению с рабочим и влиянием концентрационной поляризации на проницаемость можно пренебречь. Очевидно, при этом уменьшается толщина слоя в результате размывания его части, удерживаемой механическими силами. В то же время истинная селективность (рассчитанная исходя из концентрации у поверхности мембраны) остается постоянной. [c.131]

    В фоне, однако при разрешающей силе 500 эти ионы можно отличить от Не. Не также может присутствовать в измеримом количестве в стеклянной аппаратуре благодаря диффузии атмосферного гелия сквозь стенки вакуумной системы. Основное наложение в области изотопов аргона возникает, вероятно, вследствие наличия следов ионов НС1, имеющихся в том случае, если на приборе анализировались хлорированные соединения. Ионы наиболее тяжелых инертных газов практически полностью свободны от наложения. Таким образом, во всех случаях исследования инертных газов спектр фона не ограничивает достижение определенной точности 1890]. Наивысшая чувствительность достигается в том случае, если возможно использование совершенной статической системы, т. е. когда масс-спектрометр может быть отключен от насосов, и весь образец газа вводится в прибор. Для предотвращения относительно быстрого увеличения давления в трубке (вследствие обезгаживания) необходимо использовать технику сверхвысокого вакуума. Рейнольдсу [1689] удалось достигнуть 5-10" мм рт. ст. в течение 48 час от произвольных начальных условий при помощи системы с включенным катодом, периодически откачиваемой при 375° и при комнатной температуре. Давление в изолированной трубке в течение трех часов измерений поднималось до 5-10 мм рт. ст. из-за выделения газов в приборе, вызванного ионным пучком. Наиболее устойчивые эффекты памяти в такой системе обусловлены тем, что часть образца в форме ионов с большой энергией входит в стеклянные и металлические поверхности, где остается до тех пор, пока ионный пучок в последующих опытах не ударится об эти поверхности. Исключить полностью память прогреванием невозможно. Работа с образцами инертных газов имеет то преимущество, что отсутствует химическое поглощение, свойственное органическим материалам. Небольшие количества углеводородов, которые могут быть обнаружены в образце инертного газа при проведении обычного динамического анализа, не могут быть замеченыв статическом анализе, так как они разлагаются на катоде. При проведении статического измерения малые количества азота могут полностью окклюдироваться на чистой металлической поверхности. Лучшая чувствительность обнаружения инертного газа равна по Рейнольдсу 5-10 молекул ксенона. Чувствительность может быть повышена введением дискриминатора для понижения шумов в используемом умножителе. [c.191]


Смотреть страницы где упоминается термин Ионная сила в динамических условия: [c.262]    [c.60]    [c.262]    [c.71]    [c.191]   
Ионообменные смолы (1952) -- [ c.70 , c.72 ]




ПОИСК





Смотрите так же термины и статьи:

Ионная сила



© 2025 chem21.info Реклама на сайте