Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Интеграция геном эукариотической клетки

    Интересным приложением полимеразной цепной реакции является выявление чужеродных генетических структур, встроенных в заранее определенный район генома изучаемых клеток или вирусов. При интеграции чужеродной ДНК в хромосомный ген эукариотической клетки (или вирусный ген), для которого отсутствуют методы селекции мутантных форм, достаточно сложно доказать правильность встрой- [c.52]


    Эффективный синтез рекомбинантных белков зависит не только от используемых клеточных линий. Основное влияние на этот процесс оказывают конструкция экспрессирующего вектора, а также метод введения рекомбинантных ДНК в эукариотические клетки. В последнем случае низкая эффективность доставки рекомбинантных молекул в клетки и неоптимальная локализация сайтов их интеграции в геном могут свести на нет все достоинства клеточных линий и экспрессирующих векторов. Для повышения уровня экспрессии рекомбинантных генов, стабиль- [c.174]

    Технология рекомбинантных ДНК открывает новые замечательные возможности для дальнейшего изучения экспрессии генов и функционирования их белковых продуктов у самых разных организмов. Что касается вируса гриппа, то молекулярное клонирование позволило не только быстро накопить обширную информацию о первичной структуре всех вирусных генов (хотя, например, для НА-гена этот подход оказался наиболее продуктивным), но и конструировать in vitro определенные мутанты. В настоящее время гены, кодирующие белки НА, NA, М и NS, уже вводятся в составе бактериальных плазмидных векторов в эукариотические клетки, где и экспрессируют соответствующие полипептиды [20]. В этих опытах обычно используют плазмидные конструкции, несущие промоторы SV40, поэтому клеточные РНК-полимеразы II могут эффективно инициировать синтез РНК, содержащих генетическую информацию вируса гриппа. Правда, экспрессия носит обычно временный характер и ограничена цитопатическим эффектом. С другой стороны, интеграция НА-гена вместе с селективным маркером (таким, как клеточный ген тимидинкиназы) приводит к стабильной экспрессии [20]. [c.469]

    Если вектор представляет собой плазмиду, реплицирующуюся независимо от хромосомы, то он должен содержать сайт инициации репликации, функционирующий в хозяйской клетке. Если же вектор предназначен для встраивания в хозяйскую хромосомную ДНК, то для обеспечения рекомбинации он должен нести последовательность, комплементарную определенному участку хромосомной ДНК хозяина (хромосомный сайт интеграции). Поскольку технически многие операции с рекомбинантными ДНК сложнее проводить в клетках эукариот, чем прокариот, большинство эукариотических векторов сконструированы как челночные. Другими словами, эти векторы несут два типа сайтов инициации трансляции и два типа селективных маркерных генов, одни из которых функционируют в Es heri hia oli, а другие — в эукариотических хозяйских клетках. Такие векторные системы экспрессии разработаны для дрожжей, насекомых и клеток млекопитающих. [c.136]


    Инсерционная трансформация с участием pTi. Механизм инсерционной трансформации плазмидой pTi отличается от механизма трансформации других эукариотических систем, описанных в данной главе, но имеет некоторое сходство с бактериальной конъюгацией. В хромосоме А. tumefa ieris закодирована информация о функциях, необходимых для прикрепления бактерий к клеткам растений. Плазмида pTi кодирует цис- и функции, нужные для интеграции. Для осуществления интефации Т-ДНК на правом ее конце должен присутствовать сегмент из 25 п.н. переносятся только те последовательности, которые расположены слева от этой области. Подобная же последовательность встречается на левом конце Т-ДНК. По-видимому, она не требуется для интеграции, но помогает обозначить конец интефируемой Т-ДНК. 7) йис-функции обеспечиваются продуктами v/r-генов (рис. 5.46). Среди них имеется сайт-специфическая эндонуклеаза, которая разрезает нижнюю цепь Т-ДНК в пределах обеих пофаничных последовательностей. З -конец ДНК pTi, ближайший к правостороннему разрезу, служит праймером для синтеза ДНК, замещающей нижнюю цепь Т-ДНК. Свободная цепь Т-ДНК переносится в растительные клетки, начиная с 5 -конца правой пограничной последовательности к З -концу. Механизм ее включения в случайные сайты ДНК клеток растений остается неясным. [c.275]


Смотреть страницы где упоминается термин Интеграция геном эукариотической клетки : [c.268]    [c.73]    [c.277]    [c.294]   
Биохимия Т.3 Изд.2 (1985) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Геном клетки

Интеграция геном эукариотической клетки вирусов

Эукариотические клетки



© 2025 chem21.info Реклама на сайте