Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эукариотические экспрессирующие векторы

    Эукариотические экспрессирующие векторы имеют такую же структуру, что и их прокариотические аналоги (рис. 7.1), и должны содержать  [c.135]

Рис. 7.1. Обобщенная структура эукариотического экспрессирующего вектора. Его основные элементы эукариотический транскриптон с промотором (/>), сайтом клонирования (С К) и сигналами терминации и полиаденилирования t) эукариотический селективный маркер (СМ) сайт инициации репликации, функционирующий в клетках эукариот сайт Рис. 7.1. <a href="/info/63676">Обобщенная структура</a> эукариотического экспрессирующего вектора. Его <a href="/info/64408">основные элементы</a> эукариотический <a href="/info/170937">транскриптон</a> с промотором (/>), <a href="/info/1385425">сайтом клонирования</a> (С К) и сигналами терминации и полиаденилирования t) <a href="/info/200768">эукариотический селективный</a> маркер (СМ) <a href="/info/1868768">сайт инициации</a> репликации, функционирующий в <a href="/info/1531939">клетках эукариот</a> сайт

    Внехромосомные экспрессирующие векторы млекопитающих используются для изучения функций и регуляции генов млекопитающих. Кроме того, с их помощью могут быть получены аутентичные рекомбинантные белки, которые потенциально могут использоваться в медицинских целях для лечения некоторых заболеваний человека. Уже сконструированные экспрессирующие векторы млекопитающих весьма многочисленны, но все они обладают сходными свойствами и похожи на другие эукариотические экспрессирующие векторы. [c.149]

    Прокариотические системы экспрессии успещно используются для синтеза многих белков. Однако некоторые белки для превращения в активную форму должны претерпеть специфические пост-трансляционные модификации - гликозилирование, фосфорилирование или ацетилирование, а бактерии к этому не способны. Поэтому бьшо решено попытаться экспрессировать клонированные гены в эукариотических клетках с помощью специально созданных эукариотических экспрессирующих векторов. [c.154]

Рис. 7.17. Двухцистронный экспрессирующий вектор. Клонированные гены (а и (3) кодируют субъединицы димерного белка (а 3). Они разделены сегментом ДНК, который после транскрипции, на уровне мРНК, играет роль внутреннего сайта связывания рибосом. Каждый ген находится под контролем эукариотических промотора (р) и сигнала полиаденилирования (ра). Трансляция мРНК начинается с 5 -конца и с внутреннего сайта (угловые стрелки). Синтезированные субъединицы объединяются с образованием функционального димерного белка. Вектор содержит сайты инициации репликации, функционирующие в Е. соИ orf) и в клетках млекопитающих (orF y, селективный маркерный ген (Amp ) для отбора трансформированных клеток Е. соИ селективный маркерный ген (СМ), находящийся под контролем эукариотических промотора (р) и сигнала полиаденилирования (ра). Рис. 7.17. Двухцистронный <a href="/info/200120">экспрессирующий вектор</a>. <a href="/info/32984">Клонированные гены</a> (а и (3) кодируют субъединицы димерного белка (а 3). Они разделены сегментом ДНК, который после транскрипции, на уровне мРНК, <a href="/info/1907646">играет роль</a> внутреннего <a href="/info/200464">сайта связывания</a> рибосом. Каждый ген находится под контролем эукариотических промотора (р) и сигнала полиаденилирования (ра). <a href="/info/1350395">Трансляция мРНК</a> начинается с 5 -конца и с внутреннего сайта (угловые стрелки). Синтезированные субъединицы объединяются с <a href="/info/660502">образованием функционального</a> димерного белка. Вектор содержит <a href="/info/1868768">сайты инициации</a> репликации, функционирующие в Е. соИ orf) и в <a href="/info/200744">клетках млекопитающих</a> (orF y, <a href="/info/200493">селективный маркерный</a> ген (Amp ) для отбора трансформированных клеток Е. соИ <a href="/info/200493">селективный маркерный</a> ген (СМ), находящийся под контролем эукариотических промотора (р) и сигнала полиаденилирования (ра).
    Суммируя, можно сказать, что экспрессирующие векторы млекопитающих столь же универсальны и эффективны, как и векторы для других эукариотических систем экспрессии, если речь идет о получении аутентичных рекомбинантных белков для исследовательских и медицинских целей. Однако промышленный синтез рекомбинантных белков с использованием модифицированных клеток млекопитающих обходится слишком дорого. В этом случае предпочтительны менее дорогие системы экспрессии, за исключением тех ситуаций, когда [c.153]


    Книга авторитетного коллектива авторов из Англии, США и ФРГ — третий том практического руководства по молекулярной биологии и генной инженерии. Описана техника использования различных векторов, новые эукариотические экспрессирующие системы, способы выделения некоторых продуктов экспрессии. Два первых тома руководства выпущены издательством Мир в 1988 г. (в одной книге). [c.4]

    Для обеспечения регулируемой тканеспецифической экспрессии рекомбинантных генов в соматических клетках животных и растений в составе векторов используют энхансеры, которые избирательно стимулируют транскрипцию в соответствующих тканях и не оказывают такого действия на гены в тканях, клетки которых не экспрессируют необходимые регуляторные белки. Кроме того, популярным становится введение в экспрессирующие эукариотические векторы пограничных последовательностей нуклеотидов, фланкирующих клонируемые гены, которые помогают обеспечивать экспрессию рекомбинантных генов, сводя к минимуму эффект их положения в хромосомах соматических клеток. [c.111]

Рис. 7.13. Обобщенная схема экспрессирующего вектора млекопитающих. Полилинкер (ПЛ) и селективный маркер (СМ) находятся под контролем эукариотического промотора р) и сигнала полиаденилирования (j>a). Репликация вектора в Е. oli и в клетках млекопитающих обеспечивается сайтами инициации репликации ori и соответственно. Для отбора трансформированных клеток Е. oli используется ген устойчивости к ампициллину (АтрО Рис. 7.13. <a href="/info/1352758">Обобщенная схема</a> <a href="/info/200744">экспрессирующего вектора млекопитающих</a>. <a href="/info/1386520">Полилинкер</a> (ПЛ) и <a href="/info/1409321">селективный маркер</a> (СМ) находятся под контролем эукариотического промотора р) и сигнала полиаденилирования (j>a). <a href="/info/1404089">Репликация вектора</a> в Е. oli и в <a href="/info/200744">клетках млекопитающих</a> обеспечивается <a href="/info/1868768">сайтами инициации</a> репликации ori и соответственно. Для отбора трансформированных клеток Е. oli используется ген устойчивости к ампициллину (АтрО
    Таким образом, с помощью ретровирусов можно получать непрерывные кодирующие последовательности раздробленных эукариотических генов, которые затем могут быть клонированы и экспрессированы в бактериях или дрожжах. В данных экспериментах наиболее целесообразно использовать челночные ретровирусные векторы, так как они обеспечивают опти- [c.408]

    На первый взгляд разработка любой эукариотической системы экспрессии представляется относительно простой процедурой, состоящей в подборе соответствующих регуляторных последовательностей, встраивании их в вектор в определенном порядке и клонировании гена-мишени таким образом, чтобы обеспечивалась его эффективная экспрессия. На практике же создание первого поколения эукариотических экспрессирующих векторов оказалось весьма кропотливым делом, основанным на методе проб и ошибок. До появления работы Муллигана, Хоуарда и Берга [c.146]

    Для экспрессии клонированных эукариотических генов интенсивно используют обычные дрожжи Sa haromy es erevisiae. Тому есть несколько причин. Во-первых, это одноклеточный организм, генетика и физиология которого детально изучены и который можно выращивать как в небольших лабораторных колбах, так и в промышленных биореакторах. Во-вторых, выделены и охарактеризованы несколько сильных промоторов этих дрожжей, а для систем эндогенных дрожжевых экспрессирующих векторов могут использоваться природные, так называемые 2 мкм-плазмиды. В-третьих, в клетках [c.136]

Рис. 7.16. Экспрессирующий вектор с двумя независимо транскрибируемыми генами. Клонированные гены (а и (3) кодируют субъединицы димерного белка (ар). Каждый ген встроен в вектор как часть отдельной единицы транскрипции и находится под контролем эукариотического промотора (р) и сигнала полиаденилирования (ра). Каждая субъединица транслируется со своей мРНК объединяясь, субъединицы образуют функциональный димерный белок (ар). Векторы содержат сайты инициации репликации, функционирующие в Е. соИ (оп ) и в клетках млекопитающих (р /сик) маркерный ген (Amp ) для отбора трансформированных клеток Е. oli, селективный маркерный ген (СМ), находящийся под контролем эукариотических промотора (р) и сигнала полиаденилирования (ра). Рис. 7.16. <a href="/info/200120">Экспрессирующий вектор</a> с двумя независимо транскрибируемыми генами. <a href="/info/32984">Клонированные гены</a> (а и (3) кодируют субъединицы димерного белка (ар). Каждый ген встроен в вектор как <a href="/info/1680714">часть отдельной</a> <a href="/info/1325072">единицы транскрипции</a> и находится под контролем эукариотического промотора (р) и сигнала полиаденилирования (ра). Каждая субъединица транслируется со своей мРНК объединяясь, субъединицы образуют функциональный димерный белок (ар). Векторы содержат <a href="/info/1868768">сайты инициации</a> репликации, функционирующие в Е. соИ (оп ) и в <a href="/info/200744">клетках млекопитающих</a> (р /сик) маркерный ген (Amp ) для отбора трансформированных клеток Е. oli, <a href="/info/200493">селективный маркерный</a> ген (СМ), находящийся под контролем эукариотических промотора (р) и сигнала полиаденилирования (ра).
    Альтернативные методы скрининга космидных библиотек, описанные в гл. 3, предполагают селекцию космидных клонов с использованием феномена гомологичной рекомбинации in vivo. Остальные главы книги посвящены вопросам, связанным с экспрессией клонированных генов. Для многих белков млекопитающих удалось осуществить высокопродуктивную внутриклеточную экспрессию в Е. oli. Однако гетерологические белки, локализующиеся в цитоплазме, часто образуют трудно растворимые агрегаты, что значительно осложняет получение нативного продукта. В гл. 4 описаны эффективные способы выделения активных растворимых продуктов из нерастворимых белков цитоплазмы Е. соИ. Вероятность деградации специфическими бактериальными протеиназами многих эукариотических белков, синтезируемых в Е. oli, может быть существенно снижена, если их экспрессировать в виде гибридных белков. Такие составные белки, в которых бактериальный компонент обычно представлен -галактозидазой, можно использовать в качестве иммуногенов для получения антисыворотки и моноклональных антител к клонированному эукариотическому белковому домену. Эти вопросы >ассматриваются в двух главах — одна посвящена получению поликлональной антисыворотки, а другая — методам гибридной технологии. В последующих главах книги описаны современные эукариотические экспрессирующие системы в гл. 7 — дрожжевая, далее в трех главах — системы на основе культивируемых клеток млекопитающих и трансгенные животные. В частности, описана система экспрессии с использованием векторов, которые несут гены, обеспечивающие возможность их индуцибельной амплификации это позволяет снимать токсическое действие антибиотиков, введенных в культуральную среду. Клонированные в таком векторе гены также [c.8]


    Технология рекомбинантных ДНК открывает новые замечательные возможности для дальнейшего изучения экспрессии генов и функционирования их белковых продуктов у самых разных организмов. Что касается вируса гриппа, то молекулярное клонирование позволило не только быстро накопить обширную информацию о первичной структуре всех вирусных генов (хотя, например, для НА-гена этот подход оказался наиболее продуктивным), но и конструировать in vitro определенные мутанты. В настоящее время гены, кодирующие белки НА, NA, М и NS, уже вводятся в составе бактериальных плазмидных векторов в эукариотические клетки, где и экспрессируют соответствующие полипептиды [20]. В этих опытах обычно используют плазмидные конструкции, несущие промоторы SV40, поэтому клеточные РНК-полимеразы II могут эффективно инициировать синтез РНК, содержащих генетическую информацию вируса гриппа. Правда, экспрессия носит обычно временный характер и ограничена цитопатическим эффектом. С другой стороны, интеграция НА-гена вместе с селективным маркером (таким, как клеточный ген тимидинкиназы) приводит к стабильной экспрессии [20]. [c.469]

    Возможность экспрессии клонированных эукариотических генов в клетках Е. соИ способствовала углубленному изучению множества белков, представляющих интерес для фундаментальных научных исследований и медицины. В тех случаях, когда нативный негибридный белок экспрессируется недостаточно эффективно, часто экспрессия белков или их фрагментов в виде гибридов с полипептидами Е.соИ, такими, как -галактозидаза, оказывалась более успешной. К тому же гибридные белки можно легко очищать с помощью хроматографических методов, разработанных для -галактозидазы. Эукариотические белки, экспрессируемые в составе гибридных продуктов, были с успехом использованы при изучении иммунологически важных участков поверхностных антигенов [1], функций рекомбинантных полипептидов [2], при получении иммунологических зондов, необходимых для исследования ранее не изученных антигенов [3—6], для экспрессии вариантных форм белковых субъединиц и для выделения и исследования клонов ДНК из экспрессирующихся библиотек генов [8—10]. Технология работы с экспрессирующими векторами достигла столь высокого уровня развития, что стало возможным осуществлять в клетках Е. соН достаточно эффективную экспрессию практически любой кодирующей последовательности с образованием гибридного продукта, который можно выделить с помощью разнообразных биохимических методов и использовать его либо в различных функциональных исследованиях либо в качестве иммуногена. Синтез чужеродного полипептида в виде гибридного белка с -галактозидазой, по всей вероятности, значительно увеличивает стабильность этого полипептида в клетках Е. соИ. По-видимому, стабильность белка, а не сила промотора — наиболее важный фактор для успешной экспрессии рекомбинантных белков в бактериях. [c.138]

    Регуляторные части генов, а также продукты их экспрессии, мРНК и белки, распознаются соответствующими ферментными системами организма и обеспечивают упорядоченную экспрессию структурной части гена. При этом регуляторные участки генов и промежуточных продуктов их экспрессии, как правило, высокоспецифичны в отношении своих природных генетических эффекторов (РНК-полимераз, рибосом, факторов транскрипции и трансляции, белковых факторов сплайсинга, ферментов, осуществляющих посттрансляционные модификации полипептидов, и т.п.), и чаще всего они не могут эффективно функционировать в гетерологичном генетическом окружении. Очевидно, что при конструировании высокоэффективных экспрессирующих векторов необходимо, прежде всего, учитывать особенности структуры регуляторной части рекомбинантного гена, исходя из того, в каких генетических условиях клонированный ген будет экспрессироваться. Однако не только регуляторные последовательности генов являются препятствием для высокоэффективной экспрессии чужеродных рекомбинантных генов. Как уже было отмечено, структурные части генов про- и эукариот фундаментально отличаются друг от друга по наличию у последних внутри генов интронов. Следовательно, гены эукариот не могут эффективно экспрессироваться в бактериальных клетках, поскольку у прокариот отсутствуют соответствующие системы сплайсинга. Кроме того, у предшественников эукариотических мРНК не может осуществиться в бактериальных клетках и правильный процессинг 3 - и 5 -концевых некодирующих последовательностей. Даже такой [c.106]

    Эффективный синтез рекомбинантных белков зависит не только от используемых клеточных линий. Основное влияние на этот процесс оказывают конструкция экспрессирующего вектора, а также метод введения рекомбинантных ДНК в эукариотические клетки. В последнем случае низкая эффективность доставки рекомбинантных молекул в клетки и неоптимальная локализация сайтов их интеграции в геном могут свести на нет все достоинства клеточных линий и экспрессирующих векторов. Для повышения уровня экспрессии рекомбинантных генов, стабиль- [c.174]

    Векторные молекулы играют важнейшую роль на этапе клонирования ш vivo изучаемых последовательностей ДНК. Конкретные векторы будут рассмотрены в дальнейшем для каждой генно-инженерной системы отдельно. Использование клонирующих векторов позволяет получать необходимый фрагмент ДНК в индивидуальном состоянии и в препаративных количествах. Это подняло на качественно новый уровень исследования структурно-функциональной организации геномов как прокариотических, так и эукариотических организмов (см. 1.7). Разработка и совершенствование экспрессирующих векторов позволяет все с большей определенностью создавать штаммы — суперпродуценты чужеродных белков. [c.32]

    Помимо суперпродукции, повышенной гидро-фобности и неправильного образования дисульфидных связей формированию водонерастворимых конгломератов чужеродных белков в Е. со// способствуют и другие факторы, которые пока точно не известны. Однако совершенно ясно, что в нерастворимых включениях белок, по крайней мере частично, денатурирован, а для его перевода в растворимую форму требуется полная денатурация с разрушением дисульфидных связей. Для растворения белковых телец включения их обрабатывают в жестких денатурирующих условиях додецилсульфатом натрия, гуа-нидингидрохлоридом, мочевиной и т. п. с добавлением 2-меркаптоэтанола, дитиотреитола и др. Заключительным этапом очистки таких белков является их ренатурация, необходимая для получения функционально активного продукта. Удельная активность ре-натурированного генно-инженерного белка при этом часто не достигает уровня, свойственного природной форме. Получаемый таким образом препарат содержит балласт в виде измененных форм целевого белка, который может вызывать негативные эффекты при попадании в организм человека или животных. Поэтому при конструировании бактериальных штаммов — продуцентов эукариотических белков медицинского назначения необходимо стремиться к получению целевого белка в растворимом виде и не допускать его преципитации. Наиболее просто добиться высокого уровня продукции эукариотического белка без формирования телец включения можно, создавая штаммы, секретирующие этот белок в окружающую среду. Продуктивен также подход с использованием экспрессирующих векторов широкого круга хозяев и последовательным введением полученных на их основе гибридных плазмид в разные бактерии для поиска оптимальной пары. [c.284]

    Если библиотека кДНК создана в экспрессирующем векторе, то каждый клон будет продуцировать особый белок и тогда представляющие интфес клоны можно идентифицировать не по их нуклеотидной последовательности, а по их белковым продуктам. При этом в качестве зонда для клонов обычно применяют радиоактивно меченные антитела. Иногда вместо этого можно провести прямой тест, выявляющий биологическую активность продукта данного гена. Особенно эффективен этот метод при поисках эукариотических генов, ответственных за секретируемые факторы роста. Можно, напримф, клоны кДНК из клеток, вырабатывающих определенный фактор роста, ввести в экспрессирующий вектор, размножающийся в клетках млекопитающих. Смесь трансфицированных клеток, содержащих много таких различных клонов, выращивают на небольшой чашке, где каждая клетка, в которой экспрессируется данный ген, выделяет этот фактор роста в среду. Затем пробы среды испытывают на присутствие данного фактора роста, добавляя их к культурам других клеток, способных реагировать на этот фактор. Тест отличается настолько высокой чувствительностью, что положительный ответ получают даже в том случае, когда в исходной культуре одна клетка из тысячи содержит ген, кодирующий данный фактор роста. Повторное тестирование позволяет отыскать в смеси тот единственный клон, который продуцирует этот фактор. Таким способом удалось открыть ранее неизвестные факторы роста и выделить их за [c.336]

    Для экспрессии уже клонированного гена выбор хозяина имеет такое же важное значение, как и при самом клонировании. Наиболее подходящими хозяевами для получения белка часто оказываются клетки Е. соИ, поскольку с ними просто манипулировать и их легко выращивать в больщих объемах. Носле открытияинтронов,прерывающих кодирующие участки МНОГИХ эукариотических генов, для использования в экспрессирующих векторах чаще стали применять клонированные ьДНК, а не сами гены. Однако при синтезе активных форм определенных эукариотических белков в клетках Е.соИ возникает ряд проблем. Так, первичные продукты трансляции некоторых эукариотических генов должны подвергнуться специфическим посттрансляциои-ным модификациям, прежде чем образуются функ- [c.354]

    Экспрессирующий вектор, использующий F -npo-мотор бактериофага А. Вектор, представленный на рис. 7.4 , позволяет синтезировать эукариотические белки, не отиваюшиеся с чужеродным полипептидом. Транскрипция с этого про- [c.357]

    Белок (ГоЖ(Г0000(ЛШШУ Рис. 19.9. Любая эукариотическая кодирующая последовательность может экспрессироваться с образованием белка при ее встраивании в подходящий участок клонирующего вектора. [c.245]


Смотреть страницы где упоминается термин Эукариотические экспрессирующие векторы: [c.146]    [c.508]    [c.38]    [c.355]    [c.150]    [c.154]    [c.336]    [c.273]    [c.176]    [c.161]    [c.318]    [c.300]    [c.120]    [c.441]    [c.60]    [c.245]    [c.139]    [c.347]    [c.294]    [c.359]    [c.178]    [c.161]    [c.276]    [c.300]    [c.212]    [c.213]   
Молекулярная биотехнология принципы и применение (2002) -- [ c.136 , c.136 ]




ПОИСК





Смотрите так же термины и статьи:

Вектор



© 2025 chem21.info Реклама на сайте