Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Векторы плазмидные бактериальны

    Плазмидные векторы. Как уже отмечалось, для клонирования и экспрессии генов в клетках Е. oli обычно применяют различные модификации вектора pBR322, содержащие промоторы фага Л, лактозного и триптофанового оперона и их операторные участки. Благодаря последним экспрессию клонируемых генов можно регулировать, если плазмидная или бактериальная ДНК несет гены соответствующих репрессоров. Из многих вышеперечисленных факторов, влияющих на экспрессию генов, решающими являются сила промотора и структура сайта связывания рибосом (RBS-сайта). Напомним, что этот сайт включает в себя начальные кодоны гена, поэтому нет простых путей, обеспечивающих эффективную экспрессию чужеродных генов в бактериях. Такой экспрессии добиваются двумя принципиально различными подходами (схемами) — путем [c.329]


    Плазмиды-небольшие элементы бактерий, реплици-руюшиеся независимо от бактериальной хромосомы (гл. 31). Геном плазмид всегда представляет собой кольцевую двухцепочечную ДНК и имеет систему контроля репликации, которая поддерживает их количество в бактериальной клетке на определенном уровне. Сушествует два основных типа плазмид. В случае однокопийных плазмид на хромосому клетки-хозяина приходится 1 молекула плазмидной ДНК. Мультикопийные плазмиды присутствуют в клетке в большем количестве, обычно состав-ляюшем около 10-20 плазмидных геномов на клетку. Некоторые плазмиды находятся под ослабленным контролем репликации, в результате чего при прекрашении роста бактерий они накапливаются в очень больших количествах ( 1000 плазмидных геномов на клетку). Такие плазмиды часто используют для получения клонирующих векторов, поскольку они обеспечивают более высокий выход материала. [c.237]

    Емкость клонирующих векторов была значительно повышена с появлением векторов, сконструированных на основе хромосомы бактериофага X. Получившие широкое распространение векторы серий haron, Xgtll и XBMBL обладают, по крайней мере, двумя существенными преимуществами перед плазмидными векторами. Во-первых, векторы на основе ДНК фага X обладают значительно большей емкостью, в них можно клонировать фрагменты ДНК длиной от 5 до 25 т.п.о. Во-вторых, фаговые частицы, содержащие упакованную ДНК, способны проходить литический цикл развития внутри бактериальных клеток и поэтому образовывать стерильные пятна (бляшки) на газоне бактерий. Такие бляшки содержат в концентрированном виде как сами фаговые [c.80]

    Рассмотрим ситуацию, когда в качестве вектора были использованы плазмиды. Когда плазмидную ДНК смешивают с бактериальной культурой, возникают две проблемы. Во-первых, не все бактерии трансформируются (получают плазмиды). Во-вторых, не все плазмиды несут чужеродную донорную ДНК. Эти проблемы искусно обходят, используя плазмиды. [c.223]

    Фаговые векторы. Космиды. ВАС- и YA -векторы. Векторы на основе бактериальных плазмид широко используются для клонирования, но у них есть один важный недостаток — небольшая емкость. В таких векторах можно клонировать фрагменты в среднем не более 7—8 т. н. п., а последовательности эукариотических генов гораздо длиннее (в среднем IО—25 т. н. п). Кроме того, для изучения регуляторных последовательностей, находящихся за пределами кодирующей части генов, необходимо клонировать еще более протяженные области генома. Оказалось, что для клонирования таких фрагментов плазмидные векторы не подходят. Дело в том, что плазмиды, содержащие большие вставки хромосомной ДНК (более 8 т. н. п.), нестабильны и при репликации постепенно уменьшаются в размере в результате делеций нуклеотидов чужеродной ДНК. [c.40]


    Для выделения и исследования более длинных генов или группы соседних генов с прилежащими к ним последовательностями необходимо клонировать фрагменты ДНК еще большей длины (30—45 т. н. п.). Для клонирования таких фрагментов были сконструированы специальные векторы с большей емкостью — космиды, представляющие собой гибридную молекулу, содержащую специальный os-участок генома фага, за счет чего они могут упаковываться в головку фага X, и специальные последовательности, позволяющие им реплицироваться по плазмидному типу. Размер космиды довольно мал по сравнению с фаговым вектором — всего 5 т. н. п. и, следовательно, в космиду можно вставить чужеродную ДНК значительных размеров (30—45 т. н. п.). Фаговые головки, содержащие такую рекомбинантную ДНК, не могут размножаться как фаги. Ими трансформируют клетки Е. соИ. Гибридная молекула, содержащая эукариотическую ДНК, обрамленную os-сайтами, размножается в Ё. соИ как плазмида, и каждая фаговая частица вызывает образование колонии индивидуального бактериального трансформанта [c.41]

    Книга представляет собой практическое руководство по. генетической инженерии бактерий, написанное американскими авторами. Подробно изложены методы экспериментов с мигрирующими генетическими элементами, методы конструирования гибридных молекул ДНК, техника работы с фаговыми, плазмидными и бактериальными ДНК. Справочный раздел содержит сведения о наиболее употребляемых средах для культивирования бактерий, условиях хранения штаммов бактерий и препаратов ДНК, ферментах рестрикции, физических картах плазмидных и фаговых векторов и т. д. [c.4]

    Благодаря созданию клонирующих векторов, способных реплицироваться и стабильно поддерживаться в разных грамотрицательных бактериях, появилась возможность получать библиотеки генов изучаемых бактерий, проводить молекулярно-генетические исследования организации и функционирования хромосомных и плазмидных генов, а также координируемо регулируемых наборов генов (оперонов). С помощью комплементационного анализа удается выявлять гибридные молекулы ДНК, несущие определенные локусы бактериальной хромосомы. При этом комплементация функций возможна и в неродственных, но относительно хорошо изученных бактериях. Рассмотрим некоторые исследования такого типа. [c.228]

    Выбор типа вектора—плазмидного или фагово-го-зависит от цели эксперимента, размера внедряемого фрагмента и относительного содержания нужного фрагмента в применяемой смеси фрагментов ДНК. В целом фаговьае векторы боже эффективны, чем плазмидные, при клонировании крупных вставок, и С1фининг больщого числа негативных колоний на содержание специфической вставки провести проще, чем скрининг больщого количества бактериальных колоний (гл. 6). Самьши распространенными векторами для Е. соИ являются два бактериофага— Хи М13. [c.238]

    Суммарная активность экспрессируемого гена возрастает с ростом числа копий рекомбинантной ДНК в расчете на клетку. Используя многокопийные плазмиды, можно получить сверхсинтез нужных белковых продуктов. Получены температурно-чувствительные мутантные плазмиды, способные накопить до 1 — 2 тыс. копий на клетку без нарушения жизненно важных функций бактерий. Обычно же используемые плазмидные векторы поддерживаются в клетке в количестве 20 — 50 копий. Получение бактериальных штаммов-сверхпродуцентов плазмидных генов — одна из важнейших задач современной биотехнологии в экономическом, медицинском и социальном аспектах. [c.123]

    На данном этапе фаговый или плазмидный вектор вводят в бактериальную клетку, в которой он сможет размножаться (клонировать себя и чужеродную донорную ДНК, которую он содержит). Как правило, для этих целей используют бактерию Es heri hia oli — обычного обитателя кишечника человека. Кишечная палочка выбрана для этой цели потому, что генетика этой бакте- [c.223]

    Технология рекомбинантных ДНК открывает новые замечательные возможности для дальнейшего изучения экспрессии генов и функционирования их белковых продуктов у самых разных организмов. Что касается вируса гриппа, то молекулярное клонирование позволило не только быстро накопить обширную информацию о первичной структуре всех вирусных генов (хотя, например, для НА-гена этот подход оказался наиболее продуктивным), но и конструировать in vitro определенные мутанты. В настоящее время гены, кодирующие белки НА, NA, М и NS, уже вводятся в составе бактериальных плазмидных векторов в эукариотические клетки, где и экспрессируют соответствующие полипептиды [20]. В этих опытах обычно используют плазмидные конструкции, несущие промоторы SV40, поэтому клеточные РНК-полимеразы II могут эффективно инициировать синтез РНК, содержащих генетическую информацию вируса гриппа. Правда, экспрессия носит обычно временный характер и ограничена цитопатическим эффектом. С другой стороны, интеграция НА-гена вместе с селективным маркером (таким, как клеточный ген тимидинкиназы) приводит к стабильной экспрессии [20]. [c.469]


    При использовании плазмидного вектора препарат плазмиды добавляют в пробирку, содержашую культуру Е. соИ. Туда же вносят ионы кальция (обычно в виде хлорида кальция) и клетки подвергают короткому тепловому шоку. В результате в клеточной мембране Е. соИ быстро образуются поры, через которые плазмиды проникают внутрь клетки. Процесс введения новой ДНК в бактериальную клетку называется трансформацией. [c.223]

    Существует много способов выделения плазмидной ДНК из бактериальных клеток. Приводимая нами методика проста и вполне воспроизводима, но ее почти всегда можно заменить на другую. Мы описываем процедуру наработки космид Лориста — производных фага Я. Для других космидных векторов при необходимости можно ввести небольшие модификации. [c.60]

    Этот подход избавляет нас от необходимости выделять специфический мутант, поскольку он подразумевает использование бактериальных генов, которые дают селективные преимущества при их экспрессии в клетках млекопитающих [28]. Для этого конструируют плазмидные и ретровирусные векторы, в которых бактериальные гены сочетаются с промоторами, местами сплайсинга и сигналами полиаденилирования млекопитающих. Введение бактериальных генов в клетки млекопитающих с по--мощью трансфекции или инфекции приводит к их случайному распределению в геноме реципиента. В качестве примера бактериальных генов, способных обеспечивать селективные преимущества клеток млекопитающих, можно назвать ген Е. oli gpt (он позволяет клеткам-реципиентам утилизировать ксантин в качестве предшественника для биосинтеза пуринов) и генлео (он обусловливает устойчивость клеток млекопитающих к антибиотику G418) [29]. Основной недостаток этого метода — случайное распределение сайтов интеграции однако последние исследования позволяют надеяться, что с помощью гомологичной рекомбинации удастся осуществлять направленную интеграцию. [c.12]

    Для секвенирования ДНК по методу Сэнгера ее клонируют в однонитевых фагах. Основа метода Сэнгера — синтез радиоактивных копий однонитевой ДНК от фиксированного олигонуклеотида-затравки в присутствии нуклеотидспецифичных терминаторов синтеза ДНК. Чтобы облегчить выделение однонитевых матриц, Дж. Мессингом сконструирована серия векторов на основе фага М13, содержащего в капсидах однонитевую ДНК. Биология размножения М13 чрезвычайно удобна для создания таких векторов. М13 реплицируется в клетке в виде двунитевой репликативной формы, которую можно легко выделить и использовать для клонирования чужеродной ДНК как обычную плазмидную ДНК. В то же время такие рекомбинантные клоны выделяют и из суспензии зрелых частиц фага в однонитевой форме. Сконструированные Мессингом векторы содержат полилинкер, т. е. последовательность, являющуюся мишенью для нескольких рестриктаз, для клонирования ДНК в области фагового генома несущественной для его размножения кроме того, при вставках чужеродной ДНК изменяется цвет фаговых негативных колоний (пятен лизиса на газоне бактериальной культуры) на среде с индикаторным красителем. Для секвенирования олигонуклеотид- [c.285]

    Основным недостатком плазмидных векторов для клонирования является их малая емкость в отношении клонируемых фрагментов ДНК. Размер вставок клонируемой ДНК в плазмидных векторах, которые способны стабильно в них существовать, как правило, не превышает нескольких тысяч пар оснований. Большие вставки ДНК в векторных плазмидах нестабильны, и их размеры постепенно уменьшаются по мере увеличения числа раундов репликации таких рекомбинантных плазмид in vivo. Выраженное делетирование чужеродной ДНК в плазмидах большого размера связано с тем, что в бактериальных клетках селективное преимущество получают те плазмиды, время репликации которых минимально. Поэтому нуклеотидные последовательности ДНК, не участвующие в репликации векторных плазмид, постепенно элиминируются посредством делеций при длительном культивировании рекомбинантных бактерий. [c.80]

    Основным свойством интегрирующих векторов является их способность стабильно встраиваться в геном клетки-хозяина. Это становится возможным благодаря наличию в таких векторах последовательностей нуклеотидов, гомологичных последовательностям геномной ДНК. В результате функционирования общей системы рекомбинации происходит объединение хромосомной и плазмидной ДНК интегрирующего вектора и стабильное включение всей векторной плазмиды в хромосому. Примером интегрирующего вектора служит плазмида pFH7 В. subtilis (рис. 12, а). Векторная плазмида содержит фрагмент ДНК умеренного бактериофага SP(3 и после попадания в клетки В. subtilis, лизогенные по данному бактериофагу, эффективно интегрируется в профаг. Поскольку плазмида содержит ген устойчивости к хлорамфениколу at, клетки приобретают этот признак. Индукция профага приводит к образованию фаговых частиц, трансдуцирующих такую плазмиду и ассоциированный с ней признак устойчивости к хлорамфениколу. Интеграция плазмиды SPp в бактериальную хромосому происходит по механизму гомологичной рекомбинации с участием гена гесЕ. Способность к интег- [c.101]

    Скорость роста заражежых клеток на 25-50 % ниже, чем неинфицированных. Поэтому при титровании нитевидные фаги образуют на бактериальном газоне мутные бляшки. При размножении нитевидных фагов в бактериальной клетке их геном одновременно присутствует в виде большого числа копий двухцепочечной кольцевой плазмиды и одноцепочечной ДНК в составе вирионов. Из одного литра инфицированной культуры получают несколько миллиграммов одноцепочечной и репликативной двухцепочечной форм фаговой ДНК. На одноцепочечной вирионной ДНК многие манипуляции по созданию гибридных молекул, разработанные для вирусных и плазмидных двухцепочечных ДНК, реализовать нельзя. Однако они с успехом применимы к репликативной форме генома нитевидных фагов, которая инфекцион-на в тесте трансфекции клеток Е. oli. Все это обусловило использование нитевидных фагов для создания клонирующих векторов. [c.111]

    Векторы рассматриваемого типа обычно содержат репликон, функционирующий в клетках Е. соИ, а также детерминанты устойчивости к антибиотикам, хотя бы одна из которых экспрессируется в В. subtilis. Интегративные трансформанты В. subtilis выявляют по функциям этих плазмидных детерминант. Используя интегративные векторы, можно любые чужеродные гены ковалентно встраивать в геном бактериальной клетки. [c.257]


Смотреть страницы где упоминается термин Векторы плазмидные бактериальны: [c.58]    [c.70]    [c.74]    [c.111]    [c.394]    [c.320]    [c.230]    [c.320]    [c.336]    [c.174]    [c.342]    [c.162]    [c.23]    [c.72]    [c.77]    [c.87]    [c.95]    [c.104]    [c.162]    [c.202]    [c.221]    [c.222]    [c.238]    [c.228]    [c.226]    [c.375]    [c.110]    [c.261]    [c.278]   
Основы генетической инженерии (2002) -- [ c.191 , c.192 , c.193 , c.194 , c.195 , c.196 , c.197 , c.198 , c.199 , c.200 , c.201 ]




ПОИСК





Смотрите так же термины и статьи:

Вектор



© 2025 chem21.info Реклама на сайте