Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водородная бомба

    В 50-х годах XX в. был разработан способ получения энергии, необходимой для ядерного синтеза. В качестве источника энергии была использована бомба расщепления, и в результате была получена ядерная бомба еще большей разрушительной силы, которую называют по-разному водородная бомба , Н-бомба , термоядерная бомба , но более правильное название — бомба термоядерного синтеза. [c.179]


    Необходимые для протекания этих реакций температура ( 10 К) н нейтроны создаются взрывом атомного запала — цепной реакцией расщепления ядер или Количество энергии, высвобождающееся при взрыве мощной термоядерной (водородной) бомбы, превышает недельную выработку электроэнергии во всем мире и сравнимо с энергией землетрясений и ураганов. [c.662]

    Реакции ядерного синтеза лежат в основе создания водородной бомбы, в которой происходит слияние ядер водорода, инициируемое атомной бомбой малой мощности (т. е. бомбой, действие которой основано на делении ядер). [c.345]

    Термоядерные реакции могут протекать лишь при очень высоких температурах (сверх миллиона градусов). Высокая энергия сталкивающимся частицам может быть сообщена в результате сильного разогрева в недрах звезд, при атомном взрыве или в мощном газовом разряде. До настоящего времени практически осуществлены лишь неуправляемые термоядерные реакции при термоядерных взрывах (водородная бомба). [c.45]

    Схема реакций в термоядерной (водородной) бомбе  [c.45]

    Количество энергии, высвобождающееся при взрыве мощной термоядерной (водородной) бомбы (- 10 эрг), превышает недельную выработку электроэнергии во всем мире и сравнимо с энергией землетрясений и ураганов. [c.45]

    Для этой реакции необходима температура 40000000 К. Высокие температуры, требующиеся для инициирования процесса ядерного синтеза, удалось получить при взрыве атомной бомбы. Это было осуществлено в термоядерной, или водородной, бомбе. [c.273]

    Эдвард Теллер (род. 1908 г.) — немецкий физик, после прихода к власти нацистов эмигрировал в США, где его называют отцом водородной бомбы . Автор ряда фундаментальных исследований в области квантовой механики, квантовой химии, > в частности в области теории химических и особенно термоядерных реакций. Идея теоремы Яна— Теллера, по словам самого автора, принадлежит Л. Д. Ландау, высказавшему ее еще в 1934 г. [c.179]

    Роберт Оппенгеймер (1904—1967)—американский физик, специалист в области квантовой механики и теории атомного ядра. Был одним из руководителей работ в США по созданию атомной бомбы. В 1953 г. был отстранен от занимаемых постов за выступление против развертывания работ по водородной бомбе. [c.88]

    В этих реакциях на единицу массы реагирующих веществ выделяется значительно больще энергии, чем при делении урана. Тепловой эффект первой из этих реакций составляет 185 млрд кДж/кг, а второй — —340 млрд кДж/кг. Вместо использования радиоактивного трития, который, естественно, не может длительно храниться, в водородной бомбе применяют дейте-рид лития 6 Под воздействием высокой температуры и [c.587]


    Другое явление, в котором используется энергия связи ядер,— соединение синтез) ядер два очень легких ядра образуют одно ядро с большей массой и гораздо большей устойчивостью. При этом выделяется значительная энергия однако этот процесс требует очень высоких температур, порядка миллиона градусов. Достижение таких температур при использовании энергии, выделяющейся в процессе деления ядер, способствует соединению легких ядер. Прямым приложением этих реакций, называемых термоядерными , является водородная бомба. Схема процесса соединения ядер имеет следующий вид  [c.46]

    Проблема осуществления управляемых термоядерных реакций не решена, так как учеными еще не найден способ более длительного сохранения тонкого плазменного шнура. По невыясненным причинам, несмотря на воздействие магнитного поля, плазма растекается в пространстве и термоядерные реакции, начавшись, быстро прекращаются. Осуществление управляемых термоядерных реакций (при взрыве водородной бомбы протекают неуправляемые термоядерные реакции) является одной из важнейших проблем современности. Успешное решение ее обеспечит человечество практически неисчерпаемым источником энергии. [c.16]

    Выделение при взрыве водородной бомбы множества нейтронов ведет к возникновению больших количеств различных радиоэлементов, которые могут затем действовать в качестве радиоактивных отравляющих веществ. Особенно усиливается такая опасность, если возможно образование радиоэлементов из атомов материала самого корпуса бомбы. В отличие от обычной атомной, водородная бомба не имеет верхнего предела мощности, который ограничивается только соображениями технического характера. [c.531]

    Водородная бомба. Синтез с участием атомов водо-рода-2 служит источником энергии и при взрыве водородной бомбы. С помощью взрыва урановой бомбы водород-2 нагревают до температуры начала синтеза. Водородную бомбу еще никогда не использовали в войнах. Вызванные ее взрывом разрушения были бы столь катастрофичны, что ни одна из стран не решится ее применить. [c.32]

    Последняя из этих трех реакций протекает примерно в 100 раз быстрее, чем две первые. Поэтому она больше подходит для получения энергии путем ядерного синтеза и, по-видимому, как раз и используется в водородной бомбе. Другой реакцией ядерного синтеза, удобной для получения энергии, поскольку при этом применяется соединение с низким молекулярным весом (гидрид лития), является реакция [c.437]

    Содержание Ы составляет примерно 7% в природной смеси изотопов лития. Современная водородная бомба оснащена зарядом дейтерида лития-6. Создаваемый при взрыве атомного запала поток нейтронов вызывает ядерную реакцию (л, а), приводящую к образованию трития. При температуре ядерного взрыва ( 10 ° К) тритий реагирует с дейтерием с выделением громадного количества энергии. [c.12]

    Хорошо изучены ядерные характеристики тринадцати изотопов нептуния — от 229-го до 241-го. Изотопы с большим массовым числом, вплоть до нептуния-257, образуются при взрыве водородной бомбы. Об этом свидетельствует появление в продуктах термоядерного взрыва атомов фермия. Изучить свойства тяжелых нептуниевых ядер пока невозможно они слишком неустойчивы и переходят в высшие элементы задолго до извлечения радиоактивных продуктов подземного взрыва. [c.386]

    К июню 1951 г. наша программа создания водородной бомбы переживала тяжелый кризис . Это слова американского журналиста У. Лоуренса, волею судеб ставшего официальным историографом американского атомного оружия. Стремясь во что бы то ни стало первыми создать сверхбомбу , американцы бросили на решение этой проблемы все силы и средства. Самое большее, что удалось им сделать,— это взорвать термоядерное устройство, получившее кодовое название Майк . Именно устройство, а не бомбу Майк , оснащенный сложными рефрижераторными установками, был настолько тяжел, что его не мог поднять ни один самолет. [c.433]

    Главные физические процессы, в которых образуются техногенные искусственные радионуклиды, — это деление ядер и нейтронная активация. Деление ядер, индуцированное нейтронами и используемое для получения энергии в ядерных реакторах, является основным источником искусственных радионуклидов. При взрывах атомных и водородных бомб деление ядер также является преимущественным процессом их образования. Получающиеся при делении тяжелых атомных ядер радионуклиды (осколки) и продукты их распада представляют собой набор из нескольких сотен радиоизотопов с периодами полураспада от долей секунды до миллионов лет. Распределение выходов осколков на деление зависит от типа и энергии бомбардирующих частиц (тепловые и быстрые нейтроны, протоны, ионы гелия [c.157]

    Широко используются также изотопы водорода — дейтерий и тритий. Тяжелая вода ОгО используется в атомной энергетике как замедлитель нештронов в атомных реакторах. Дейтерий и тритий используются в ка-честпе термоядерного горючего в водородных бомбах, поскольку при реакции [c.288]

    Термоядерный синтез основан на соединении атомных ядер в более сложные. Обычно два очень легких ядра образуют одно ядро с большей массой и очень большой устойчивостью, Прн этом выделяется колоссальная энергия. Однако термоядерные реакции требуют очень высоких температур — порядка миллиона градусов. Достижение таких температур осуиц ствляется цепной реакцией деления j aU пли giiPii. На использопаиии этих реакций основана термоядерная (водородная) бомба. [c.69]

    Искусственно вызываемые термоядерные процессы были пока реализованы лишь Рис. ХУ1-31. Прннци- в форме т. н. водородной бомбы, пиальная схема водород- принципиальная схема которой показана ной бомбы. на рис. ХУ -31 (АБ — атомная бомба). [c.530]


    ДЕЙТЕРИЙ (тяжелый водород) В, стаб. и.зотоп водо юда, мае. ч. 2, ат. м. 2,014. Прир. водород содержит 0,012— 0,016% по массе В. Газ —254,5 °С, г ,, —249,5 °С Ср 29,2 Дж/(моль-К) (ирн 298 К), 5 144 Дж/(моль-К), Молекула двухатомна. Ядро атома Д. наз. дейтроном, Получ. ректификация водорода многоступенчатый электролиз воды. Примен. изотопный индикатор входит в состав ВВ в водородной бомбе перспективное термоядерное горючее. [c.149]

    J-b3 He. Газ, Г л—252,52 С, iK —248,12 °С. Молекула двухатомна. Ядро атома Т наз. тритоном. Получ. в ядерных реакторах "Li +jn= T -t- Не. И, Зотоннып индикатор. Входит в состав ВВ в водородной бомбе. Перспективен как термоядерное горючее. ПДК 7,4-К) Бк/л. [c.595]

    Дейтерий D( H) (лат. Deuterium — тяжелый водород) —стабильный изотоп водорода с массовым числом 2. Открыт в 1932 г. Содержится в природных соединениях водорода. Д. выделяют электролизом или ректификацией воды. Д. широко используется в атомной энергетике как замедлитель нейтронов в атомных реакторах в смеси с тритием применяют для термоядерной реакции в водородных бомбах. Декан СНз(СН2)8СНз— бесцветная жидкость. Содержится в нефтепродуктах. Составная часть дизельных топлив. [c.45]

    Выразительный пример огромного значения точности узнавания можно найти в области химических коммуникаций у насекомых. Так, антенные рецепторы данного насекомого способны уловить и безошибочно идентифицировать единичные молекулы специфического феромона на фоне почти бесконечного многообразия молекул других веществ, присутствующих в окружающей насекомое среде в количествах порядка молей, т. е. при отношении сигнал/шум порядка В результате узнавания рецептором лишь нескольких молекул феромона и взаимодействия с ними происходят драматические изменения поведения всего насекомого. Иначе говоря, микроскопический (молекулярный) сигнал эффективно воздействует на макроскопический объект (многоклеточный организм), что отвечает фантастическим значениям коэффициента усиления сигнала (порадка Ю ). Даже среди самых современных и совершенных технических систем трудно найти усилительные устройства со сравнимыми характеристиками эффективности. С ними можно, пожалуй, сопоставить только соотношение энергии нажатия кнопки в ядерном чемоданчике с энергией взрьша водородной бомбы. [c.475]

    Открытие элементов № 99 и 100 — эйнштейния и фермия — тоже можно считать примером серендипности, В 1949 г. в Советском Союзе были проведены успешные испытания атомной бомбы США лишились монополии на атомное оружие, А еще через несколько лет Америка оказалась в роли догоняющего первая водородная бомба была Сделана в нашей стране. [c.433]

    При подземных ядерных взрывах с выбросом грунта также образуется радиоактивное облако, но меньших размеров по сравнению с наземным взрывом. Кроме того, значительная часть радионуклидов при взрывах без выброса грунта попадает в атмосферу в виде струи радиоактивного газа, который вырывается из толщи грунта. Доля радионуклидов, осаждающихся на следе облака, колеблется в широких пределах от 0,5 до 46 % всей активности наземных ядерных взрывов [16]. Крупные инциденты с ядерным оружием были в армии США. В 1966 г. в небе над населенным пунктом Паль-марес (Испания) бомбардировщик В-52 столкнулся с самолетом-заправщиком. При включении аварийного приспособления произошел спуск четырех водородных бомб, и часть радиоактивного вещества распылилась. Работы по дезактивации загрязненной местности обошлись в 50 млн долларов [17]. Аварии носителей ядерного оружия с выбросом радионуклидов зафиксированы на кораблях и подводных лодках военно-морских сил ряда стран. [c.182]


Смотреть страницы где упоминается термин Водородная бомба: [c.114]    [c.427]    [c.262]    [c.96]    [c.423]    [c.475]    [c.51]    [c.569]    [c.108]    [c.134]    [c.51]    [c.135]    [c.157]    [c.158]    [c.263]   
Учебник общей химии (1981) -- [ c.530 ]

Физическая химия и химия кремния Издание 3 (1962) -- [ c.95 ]

Основы общей химии Том 3 (1970) -- [ c.372 , c.374 ]

Химия Справочник (2000) -- [ c.189 ]




ПОИСК





Смотрите так же термины и статьи:

Бомба атомная водородная

Водородная бомба, термоядерная реакция

Энергия водородной бомбы



© 2025 chem21.info Реклама на сайте