Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Атомное ядро теория

    Важное значение имеет протонно-нейтронная теория строения атомного ядра. Представление, что [c.71]

    Протонно-нейтронная модель атомного ядра. Из весьма значительного числа элементарных частиц, известных в настоящее время, определяющая роль в свойствах образуемых ими атомов принадлежит трем — протону, нейтрону и электрону. Согласно протонно-нейтронной теории строения ядра, предложенной Д. И. Иваненко и В. Гейзенбергом (1932 г.), свойства атомных ядер определяются первыми двумя. Протонно-нейтронная модель предусматривает, что ядра атомов всех элементов состоят из протонов и нейтронов (очевидное исключение представляет водород, атомное ядро которого состоит из одного протона). Число протонов р в ядре определяет порядковый номер 2 химического элемента в периодической системе элементов Д. И. Менделеева. [c.5]


    Луи де Бройль (род, в 1892 г,) — французский физик, автор гипотезы о волновых свойствах материи, которая легла в основу квантовой механики, Работал также в области теории электронов, строения атомного ядра, теории распространения электромагнитных волн, В 1929 г. награжден Нобелевской премией, с 1958 г. — иностранный член Академии наук СССР. [c.70]

    Атомное ядро. Согласно протонно-нейтронной теории, выдвинутой советскими учеными Д. Д. Иваненко и Е. Н. Гапоном, а также немецким ученым В. Гейзенбергом, атомное ядро состоит из протонов и нейтронов, называемых нуклонами. [c.32]

    Согласно современной теории атомное ядро имеет оболочечное строение. Протоны и нейтроны независимо друг от друга заполняют ядерные слои и подслои, подобно тому как это наблюдается для электронов в электронной оболочке атома. [c.9]

    В 1938 г. нацистская Германия вторглась в Австрию и аннексировала ее. Австрийская гражданка Лизе Мейтнер вынуждена была эмигрировать в Швецию. В свете пережитого последствия возможной научной ошибки представлялись ей столь малозначащими, что она опубликовала теорию Гана о том, что атомные ядра урана при бомбардировке нейтронами подвергаются расщеплению. [c.177]

    Развивая теорию строения атома, Резерфорд пришел к выводу, что в центре атома имеется очень маленькое ядро, которое заряжено положительно и содержит все протоны (и все нейтроны, как позднее выяснилось). Атомное ядро должно быть очень небольшим (поскольку лишь очень малая часть альфа-частиц отклоняется, сталкиваясь с мишенью), но в этом ядре должна быть сосредоточена практически вся масса атома. [c.155]

    Изучение явления радиоактивности первоначально привело к предположению, что ядра различных атомов построены из протонов и электронов. Эта гипотеза долгое время была общепризнанной. Однако последующее изучение ядерных реакций, открытие нейтронов Чедвиком и выявившаяся возможность выделения нейтронов из любых атомных ядер (кроме протона) привели к отказу от ранее принятой гипотезы. Д. Д. Иваненко и Е. Н. Гапон (1932) и Гейзенберг (в том же году) высказали и обосновали положение, что атомные ядра состоят из протонов и нейтронов, и предложили протонно-нейтронную теорию атомных ядер. [c.51]

    Рассмотри основные положения теории кристаллического поля на примере одноядерных комплексов ( -элементов. Напомним, что пять -орбиталей по-разному располагаются в пространстве относительно атомного ядра. Орбиталь сконцентрирована вдоль оси 2, орбиталь йхг у. —вдоль осей XVI у, тогда как орбитали ху, и расположены по биссектрисам между осями (см. рис. 8). Орбитали г и обычно обозначают а орбитали ху, жг и обозначают с1 . [c.116]


    Если атомное ядро имеет несферическую форму, то оно обладает электрическим квадрупольным моментом, значение которого показывает, насколько велика несферичность. Теория свидетельствует [c.229]

    На основе развитых ранее представлений можно уже при некоторых упрощающих предположениях установить строение также и других атомов периодической системы. Наиболее существенное упрощение теории состоит в том, что в ней не учитывается взаимодействие между электронами, т. е. предполагается, что каждый электрон движется в поле атомного ядра не- [c.51]

    О границе таблицы периодической системы со стороны тяжелых элементов можно говорить тогда, когда время жизни атомов элемента уже недостаточно для того, чтобы измерить его свойства. Опыт показал, что стабильность тяжелых атомов с увеличением порядкового номера быстро уменьшается. Естественный конец периодической системы определяется порядковым номером элемента, для которого среднее время жизни атомного ядра становится меньше 1 10 с. Для элементов с порядковыми номерами 108—110 время жизни около 1 10 с. Поэтому считается, что периодическая система заканчивается недалеко за этими элементами. Развитие теории атомных ядер позволило считать, что при больших порядковых номерах могут существовать так называемые острова стабильности , т. е. отдельные атомы с большим временем жизни. [c.89]

    Модель атома Бора. Планетарная модель атома Резерфорда отражала ту очевидную истину, что основная масса атома содержится в ничтожно малой части объема — атомном ядре, а в остальной части объема атома распределены электроны. Однако характер движения электрона по орбите вокруг ядра атома противоречит теории движения электрических зарядов — электродинамике. [c.47]

    Роберт Оппенгеймер (1904—1967)—американский физик, специалист в области квантовой механики и теории атомного ядра. Был одним из руководителей работ в США по созданию атомной бомбы. В 1953 г. был отстранен от занимаемых постов за выступление против развертывания работ по водородной бомбе. [c.88]

    Бор Нильс Хендрик Давид (1885—1962)—датский физик. Создал первую квантовую теорию атома. Участвовал в разработке основ квантовой механики. Внес значительный вклад в развитие теории атомного ядра, ядерных реакции, взаимодействия элементарных частиц. Лауреат Нобелевской премии. Иностранный член АН СССР. [c.33]

    Открытие сложности строения атома и его изменяемости (конец XIX и начало XX в.) вызвало к жизни целый ряд теорий химической связи и образования молекул. Было совершенно ясно, что образование химической связи идет только за счет электронов, окружающих атомное ядро, так как заряд ядра и место атома в периодической системе элементов в химических процессах не изменяются. Однако электронная теория валентности оказалась весьма сложной, и прошло много времени, прежде чем она стала современным учением о химической связи. [c.69]

    Рассмотрим основные положения теории кристаллического поля на примере одноядерных комплексов -элементов. Напомним, что пять d-орбиталей по разному располагаются в пространстве относительно атомного ядра. Орбиталь сконцентрирована вдоль оси z, орбиталь [c.551]

    Одним из наиболее важных положений химической теории является положение о разделении веществ на два класса —на элементарные (простые) вещества и соединения. Такая классификация была предложена в 1787 г. французским химиком Антуаном Лораном Лавуазье (1743—1794) на основании выполненных им за предшествующие 15 лет количественных исследований множества веществ (реагентов и продуктов реакций), участвующих в химических процессах. Лавуазье определял соединение как вещество, которое можно разложить на два или несколько других веществ, а элементарное вещество (или элемент)— как вещество, которое нельзя разложить. В своем Элементарном курсе химии , опубликованном в 1789 г., Лавуазье перечислил 33 элемента и среди них 10 еще не выделенных в виде простых веществ (но уже известных по своим окислам, сложную природу которых он предугадал точно). После открытия электрона и атомного ядра определения элементарных веществ и соединений были пересмотрены этому вопросу посвящены последующие разделы данной главы. [c.77]

    Борн Макс (1882 - 1970), немецкий физик, которому принадлежит современная интерпретация волновой функции. Автор гидродинамической теории ядра, его именем названы борновские приближения в теории возмущений (см. 3 гл. III). Оппенгеймер Роберт (1904 - 1967), американский физик, начинавший научную деятельность в Германии. Известен работами по квантовой механике, физике атомного ядра и космических лучей. Руководил работами по созданию американской атомной бомбы. [c.245]


    Глава 1. ЭЛЕМЕНТЫ ТЕОРИИ СТРОЕНИЯ АТОМНОГО ЯДРА [c.5]

    Первое искусственное осуществление ядерной реакции (Резерфорд, 1919) положило начало новому методу изучения атомного ядра. Открытие нейтронов (Чэдвик, 1932) привело к возникновению протонно-нейтронной теории атомных ядер, предложенной сначала Д. Д. Иваненко и Е, Н. Гапоном (1932) н в том же году Гейзенбергом. Вскоре Фредерик и Ирен Жолио-Кюри (1934) открыли явление искусственной радиоактивности В 1938 г. Хан и Штрассман осуществили деление атомного ядра урана, а в 1940 г. К. Д. Петржак и Г. Н. Флеров открыли явление самопроизвольного деления атомных ядер. В 40-х годах была осуществлена цепная ядерная реакция (Ферми) и вскоре был открыт новый вид ядерных превращений — термоядерные реакции. Дальнейшее развитие ядерной физики сделало возможным использование ядерной энергии. Позднее эти явления стали использовать при химических и биологических исследованиях. В настоящее время разрабатывается проблема осуществления управляемых термоядерных реакций. [c.19]

    Энергия связи нуклонов и устойчивость атомного ядра< Одна из основных характеристик атомного ядра — энергия связи составляющих его частиц. Мерой этой энергии Е является работа, которую необходимо совершить для отрыва друг от друга и разведения в бесконечность всех нуклонов ядра. Энергию связи нуклонов в ядре можно подсчитать с помощью известного соотношения, вытекающего из теории относительности  [c.8]

    Глава 1. Элементы теории строения атомного ядра.....(5) [c.238]

    Ядерный квадрупольный резонанс. Метод ядерного квадрупольного резонанса позволяет определить константу ядерного квадрупольного взаимодействия, являющуюся мерой асимметрии электрического поля вблизи атомного ядра (теория метода изложена в [71—74]). При чисто ионной связи электрическое поле сферически симметрично вокруг ядра данного иона, например С1 . В этом случае считают, что у свободного иона С1 квадрупольное взаимодействие отсутствует и константа равна нулю. При малой степени ковалентности связи возникает квадрупольное взаимодействие, количественно передаваемое небольшими значениями константы. При значительном увеличении степени ковалентности возрастает асимметричность градиента электрического поля вокруг ядра агома хлора (табл. 4.8), Константа монотонно изменяется при переходе от почти ионного соединения Li I до чисто ковалентного lj и далее к соединению 1F, в котором заряд на атоме хлора становится положительным. [c.126]

    Бор — глава крупной научной школы в области теоретической фи.чики, автор нсрвоня-чальной квантовой теории строения атома (191 1—1916 гг.), послужившей исходным пунктом современной квантовомеханической теории строения атома в 1913 г. установил принцип соответствия между классическими и кванто-пыми представлениями ему принадлежат также работы по теоретическому объясиеинк.1 периодического закона Д. И. Менделеева и по теории атомного ядра. В 1922 г, награжден Нобелевской премией. С 1929 г. — иностранный член Академии иаук СССР. [c.68]

    Изотопы. Протонно-нейтронная теория позволила разрешить и еще одно противоречие, возникшее при формировании теории строения атома. Если признать, что ядра атомов элементов состоят из определенного числа нуклонов, то атомные массы всех элементов должны выражаться целыми числами. Для многих элементов это действительно так, а незначительные (отклонения от целых чисел можно объяснить недостаточной точностью измерений. Однако у некоторых элементов значения атомных масс так сильно отклонялись от целых чисел, что это уже нельзя объясннгь нелочностью измерении и другими случайными причинами. Например, атомная масса хлора равна 35,45. Установлено, что приблизительно три четверти существующих в природе атомов хлора имеют массу 35, а одна четверть — 37. Таким образом, существующие в природе элементы состоят из смеси атомов, имеющих ра и ые массы, но, очевидно, одинаковые химические свойства, т. е. существуют разновидности атомов одного элемента с разными и притом целочисленными массами, Ф. Астону удалось разделить такие смеси на составные части, которые были названы изотопами от греческих слов изос и топос , что означает одинаковый и место (здесь имеется в виду, что разные изогоны одного элемента занимают одно место в периодической системе), С точки зрения протонно-нейтронной теории изотопами являются разновидности элементов, ядра атом.ов которых содержат различн-je число нейтронов, но одинаковое число протонов. Химическая природа элемента обусловлена числом протонов в атомном ядре, ко- [c.22]

    В 1926 г. Гейзенберг и Шредингер создали механику атомных и молекулярных систем, которая получила широкое применение в атомной и молекулярной физике. Необходимое дополнение в квантовую механику внес Паули, разработавший теорию электронных спинов. Это явилось фундаментом, на котором с учетом известного правила несовместимости (запрет Паули в атоме не может быть двух электронов, обладающих 4 одинаковыми квантовыми числами) было построено учение о химических силах, в принципе позволяющее понять и описать образование химических соединений. Сначала удалось интерп )етировать устойчивость электронных оболочек атомов инертных газов, благодаря чему нашло исчерпывающее объяснение понятие электровалентной связи, лежащее в основе теории Косселя. Затем получила квантово-механическое истолкование и ковалентная связь. Гейтлером и Лондоном было показано, что связь двух атомов в молекуле водорода может быть объяснена чисто электростатическими силами, если для этого использовать квантовую механику. Силы, связывающие два атома и два электрона, возникают благодаря тому, что оба электрона имеют антипараллельные спины и с большой степенью вероятности находятся между двумя атомными ядрами насыщаемость химических связей объясняется принципом Паули. Таким образом, представления Льюиса получили исчерпывающее физическое обоснование. [c.24]

    Не следует забывать, что химия исследует вещество только в одном из аспектов. Изучая состав, химические свойства, способы получения твердых веществ, мы не можем обходиться без представления об их электронной конфигурации, кристаллической структуре, без знания закономерностей, которым подчиняются изменения физических свойств с изменением энергетического состояния вещества, словом без физической теории и без физических экспериментов. Химия, физика твердого тела и молекулярная биология — по определению физика-теоретика айскопфа — являются непосредственным следствием квантовой теории движения электронов в кулоновском поле атомного ядра. Все многообразие химических соединений, минералов, изобилие видов в мире организмов обусловливается возможностью расположения в достаточно стабильном положении сравнительно небольшого количества первичных структурных единиц — атомов — огромным количеством способов, диктуемых пространственной конфигурацией электронных волновых функций. Длина связи, т. е. межатомное расстояние,— это диаметр электронного облака, определяемый амплитудой колебания электрона в основном состоянии. Поскольку масса ядра во много раз больше массы электрона, соответствующая амплитуда колебания ядра во много раз (корень квадратный из отношения масс) меньше. Поэтому, как отмечает Вайскопф, ядра способны образовывать в молекулах и кристаллах довольно хорошо локализованный остов, устойчивость которого измеряется энергией порядка нескольких электронвольт, т. е. долями постоянной Ридберга. Местоположения ядер атомов, образующих остов кристалла, с большой точностью определяются методом рентгеноструктурного анализа. Таким образом, бутлеровская теория строения, структурные формулы в наше время получили ясное физическое обоснование. [c.4]

    Теория кристаллического поля (ТКП) развивает воззрения об электростатическом взаимодействии между d-элементом в качестве центрального иона и ионами противоположного знака или полярными молекулами. При этом учитывается квантово-механическая природа электронов комплексообразователя. Основы этой теории сформулированы в 1929 г. Г. Бете в его работе Расщепление атомных термов в кристалле . Электростатическая теория рассматривала ион металла как атомное ядро, окруженное сферическим электронным облаком. Теория кристаллического поля допускает, что d-электроны образуют несферические электронные облака путем избирательного заполнения орбиталей с низкими значениями энергии, направленными между лигандами. В этой теории центральный ион d-элемента рассматривается с учетом его электронного строения, участия валентных электронов, а лиганды — бесструктурно как источники электростатического поля. В этом недостаток теории. В ионе или атоме переходного элемента без внешнего окружения энергия всех пяти d-орбиталей (d y, d z, d 2< принадлежащих к одному и тому же энергетиче- [c.228]

    По теории Д. Д. Иваненко и Е. Н. Гапона (1932), все протоны и все нейтроны, входящие в состав структуры данного атома, полностью сосредоточены в его ядре (протонно-нейтронная теория строения атомного ядра). Поэтому указанные элементарные частицы получили общее название нуклонов (лат. nu leus — ядро). [c.19]

    Наиб, полный расчет производят по след, схеме. Определяются электронные состояния, подлежащие исследованию, и для каждого состояния (или для системы состояний) задаются орбитали, образующие базис ЛКАО-приближения. Выделяется набор геом. конфигураций ядер молекулы, для к-рых надо вьшолни-гь расчет электронной энергии и волновых ф-ций. Напр., для расчета энергии диссоциации НС1 надо решить электронную задачу как минимум для двух расстояний между атомными ядрами-равновесного и достаточно большого. В ходе расчетов набор геом. конфигураций ядер может изменяться, напр, при поиске равновесных конфигураций изомеров нли переходных состояний (см. Активироватого комплекса теория). [c.238]

    РЕЗОНАНСА ТЕОРИЯ, теория электронного строения хим. соединений, в основе к-рой лежит представление о том, что электронное распределение, геометрия и все др. физ. и хим. св-ва молекул должны быть описаны не одной возможной структурной ф-лой, а сочетанием (резонансом) всех альтернативных структур. Идея такого способа описания электронного строения принадлежит Л. Полингу (1928). Р.т. является развитием классич. теории хим. строения для молекул, ионов, радикалов, строение к-рых можно представить в виде неск. разл. структ) рных фйл, отличающихся способом распределения электронных пар между атомными ядрами. Согласно Р.т., строение таких соед. является промежуточным между отдельными возможными классич. структурами, причем вклад каждой отдельной структуры можно учесть при помощи разл. модификацгпг квантовомех. метода валентных связей (см. Валентных связей метод). [c.227]

    Теория конденсированной матфии, в особеиностн жидкого гелия Вклад в теорию атомного ядра и элементарных частиц Открытие оболочечной структуры атомного ядра [c.778]


Смотреть страницы где упоминается термин Атомное ядро теория: [c.419]    [c.51]    [c.72]    [c.208]    [c.11]    [c.109]    [c.98]    [c.109]    [c.135]   
Физическая химия Том 1 Издание 5 (1944) -- [ c.71 ]

Основы общей химии Том 3 (1970) -- [ c.362 ]




ПОИСК





Смотрите так же термины и статьи:

Атомная теория

Атомное ядро

ИЗОТОПИЯ- СТАБИЛЬНЫЕ И РАДИОАКТИВНЫЕ ИЗОТОПЫ Элементы теории строения атомного ядра

Макротела, ядра, электроны — 13. 2. Макротела и молекулы, атомы, молекулярные и атомные ионы — 15. 3. Замечания о развитии классической и квантовомеханической теории строения молекул

Теория строения ядер атомов. Закономерности ) изотопии. Методы получения атомной энергии

Ядро атомное протонно-нейтронная теория

Ядро атомное протонно-нейтронная теория строе

Ядро атомное ядерная теория



© 2025 chem21.info Реклама на сайте