Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Роберт

Рис. 2, Алхимическая космология нключала четыре элемента-стихии Аристотеля. При этом для обозначения и металлов и планет использовали одни и те же символы. На рисунке приведена схема Роберта Фладда (1574—1637), английского ученого эпохи Возрождения, который отдал дань оккультным наукам, предложив свою систему химических элементов . Рис. 2, Алхимическая <a href="/info/1372892">космология</a> нключала <a href="/info/584854">четыре элемента</a>-<a href="/info/758301">стихии Аристотеля</a>. При этом для обозначения и металлов и планет использовали одни и те же символы. На рисунке приведена схема Роберта Фладда (1574—1637), английского ученого <a href="/info/524374">эпохи Возрождения</a>, который отдал дань оккультным наукам, предложив свою систему химических элементов .

    Такого рода демонстрации повышали интерес к свойствам воздуха. В частности, они привлекли внимание ирландского химика Роберта Бойля (1627—1691). Сконструированный Бойлем воздушный насос был совершеннее насоса Герике. Освоив методику откачивания воздуха иа сосуда, Бойль решил попытаться сделать обратное — сжать воздух. [c.31]

    Здесь необходимо сказать несколько слов о броуновском движении — быстром беспорядочном движении небольших частиц, взвешенных в воде, которое впервые наблюдал в 1827 г. шотландский ботаник Роберт Броун (1773—1858). [c.115]

    Однако это определение не отвечает на вопрос о том, как отличить элемент, когда мы встречаемся с ним. Более практическое определение элемента принадлежит Роберту Бойлю (1627-1691) Элемент-это вещество, которое при химическом превращении всегда увеличивает свой вес . Это утверждение следует понимать в том смысле, которь[й ему приписывался. Например, при ржавлении железа образующийся оксид железа имеет больший вес, чем исходное железо. Однако вес железа и соединяющегося с ним кислорода точно равен весу образующегося оксида железа, И наоборот, когда мы нагреваем красный порошок оксида ртути, происходит выделение газообразного кислорода, а остающаяся серебристая жидкая ртуть имеет меньший вес, чем исходный красный порошок. Но если это разложение проводится в закрытой реторте, можно убедиться, что в процессе реакции не происходит изменения общего веса всех веществ, (Лишь спустя 100 лет после Бойля Лавуазье провел опыты с точным взвешиванием, продемонстрировав, что в подобных реакциях выполняется закон сохранения массы,) [c.270]

    Английский ученый Роберт из Честера был среди тех, кто первым перевел (ок.1144 г.) арабские труды по алхимии на латинский язык. У него нашлось немало последователей. Лучшим переводчиком был итальянец Герард Кремонский (ок. 1114—1187). Большую часть своей жизни он провел в испанском городе Толедо, который был отвоеван христианами в 1085 г., и перевел с арабского языка 92 трактата. [c.23]

    В конце 50-х годов XIX в. немецкий физик Густав Роберт Кирхгоф (1824—1887), работавший с немецким химиком Робертом Вильгельмом Бунзеном (1811—1899), показал, что эти линии содержат поразительную информацию. [c.100]

    Хотя отношение заряда электрона к его массе было измерено Томсоном в 1897 г., абсолютную величину заряда электрона удалось установить только в 1911 г., когда Роберт Милликен (1868-1953) поставил остроумный опыт, иллюстрируемый рис. 1-13. Он впрыскивал пульверизатором мельчайшие капельки масла между горизонтально расположенными пластинами конденсатора и затем облучал эти капельки рентгеновскими лучами. Возникающие при ионизации воздуха электроны прилипали к капелькам масла, на которых таким образом возникало один, два или несколько электронных зарядов. Милликен сначала измерял скорость свободного падения заряженных капелек в воздухе с известной вязкостью. Затем он измерял напряжение, которое необходимо приложить к пластинам конденсатора, чтобы заставить капельки масла неподвижно повиснуть между пластинами. Он вычислил, что заряд на любой капельке масла всегда представляет собой целое кратное величины 1,602 10 Кл, и пришел к правильному выводу, что это и есть заряд 1 электрона. [c.50]


    Тем не менее имелись веские причины считать, что частица катодных лучей намного меньше любого атома. В 1911 г. американский физик Роберт Эндрюс Милликен (1868—1953) измерил, вполне точно, минимальный электрический заряд, который может нести частица, и тем самым доказал справедливость такого предположения. [c.149]

    Роберт Пири, первооткрыватель Северного полюса, писал  [c.214]

    На рис. 1Х-50 даны значения параметров процесса концентрирования 4% раствора гидроокиси калия в трех выпарных аппаратах Роберта [38]. Разность температур первичного греющего пара и отходящих из последнего аппарата вторичных паров составляет 110°С (движущая сила процесса). Этой разности пропорциональна скорость процесса и, следовательно, обратно пропорциональна площадь поверхности теплообмена (при определенном количестве [c.395]

    Сд по методу Роберта %Сд но прямому методу Разность [c.386]

    С точки зрения исследования роли топлива в калильном зажигании от нагара наиболее детальные исследования проведены Д. М. Аро-новым и Ю. А. Роберт. Ими разработана и проверена оригинальная методика исследований на одноцилиндровом двигателе установки ИТ 9. Сущность метода состоит в накоплении нагара на низкотемпературном режиме и регистрации числа вспышек калильного зажигания при выжигании нагара на высокотемпературном режиме. [c.79]

    А р о н о в Д. М., Роберт Ю. А., в сб. Эксплуатационно-технические свойства и применение автомобильных топлив, смазочных материалов и спец-жидкостей , вып. 4, Изд. Транспорт , 1966, стр. 28. [c.89]

    Роберт Бойль (1627-1691), которому мы обязаны первым практически правильным определением химического элемента (см. гл. 6), интересовался также явлениями, происходящими в сосудах с разреженным воздухом. Изобретая вакуумные насосы для выкачивания воздуха из закрытых сосудов, он обратил внимание на свойство, знакомое каждому, кому случалось накачивать камеру футбольного мяча или осторожно сжимать воздушный шарик чем сильнее сжимают воздух в закрытом сосуде, тем сильнее он сопротивляется сжатию. Бойль называл это свойство пружинистостью воздуха и измерял его при помощи простого устройства, показанного на рис. 3.2,а и б. [c.117]

    Роберт Майер сформулировал принцип энергии. [c.11]

    Выдающихся успехов в этой области достигли английский физик Джеймс Прескотт Джоуль (1818—1889) и немёикие физики Юлиус Роберт Майер (1814—1878) и Герман Людвиг Фердинанд Гельмгольц (1821—1894). К 40-м годам прошлого столетия в результате проведенных ими работ стало ясно, что в процессе перехода одной формы энергии в другую энергия не создается и не исчезает. Этот принцип получил название закона сохранения энергии, или первого начала термодинамики. [c.108]

    Английский химик Роберт Робинсон (1886—1975) систематически изучал алкалоиды. Наибольший успех ему принесли работы по определению строения морфина (1925 г.) и стрихнина (1946 г.). Последняя работа Робинсона была подкреплена работой американского химика Роберта Бернса Вудворда (1917—1979), который в 1954 г. синтезировал стрихнин. Вудворд завоевал признание как химик-синтетик после того, как он и его американский коллега Уильям Эггерс Дёринг (род. в 1917 г.) в 1944 г. синтезировали хинин — то самое соединение, за которым вслепую охотился Перкин (правда, эта охота в конце концов принесла ему огромные доходы). [c.125]

    См. Крицман В. А. Роберт Бойль. Джон Дальтон. Амедео Авогадро. Создатели атомнс-молекулярного учения в химии.— М. Просвещение, 1978, 144 с. [c.182]

    Другие жтоды, включатцие определение степени разветвления. В 1952 г. Роберт [34], пытаясь исключить определение молекулярного веса, установил линейное соотношение между процентным содержанием углерода в ароматической структуре (% Сд), коэффициентом преломления п , плотностью d и анилиновой точкой АР. Это соотношение имеет вид  [c.385]

    При пpoDepJ e этой формулы [40] найдено, что значения % С , вычисленные по Роберту, обычно выше, чем найденные другими методами. Это расхождение тем больше, чем выше значение % Сд. В табл. 3 приведены некоторые данные по дпстиллятным нефтяным фракциям для сравнения значений % Сд, вычисленных по формуле Роберта, с данными прямого метода. [c.386]

Таблица 3 Сравившю значений % Сд, определенных по методу Роберта и по прямому методу Таблица 3 Сравившю значений % Сд, определенных по методу Роберта и по прямому методу
    Роберт Ф. Керлей из Этил Корпорейшн сообщает (частная информация), что представление о сортности и соответствующая шкапа предложены Службой военной авиации (Милитари Эйр Сервис), в состав которой в 1939— 42 гг. входили Бюро Аэронавтики Военно-морского министерства США и Британская воздушная комиссия. Указывается также, что сам Роберт Ф. Керлей и С. Д. Герон из Этил Корпорейшн тесно связаны с работами по введению этого индекса, см. [278]. Взаимосвязь между мощностью, ограниченной вследствие детонации, и числом отдачи существует далеко не всегда, поскольку для достижения детонационного удара изменяется только степень открытия дроссельной задвижки, в то время как прочие важнейшие характеристики двигателя не изменяются. [c.431]

    Изучение явления калильного зажигания в автомобильных двигателях начато сравнительно недавно — 15—20 лет назад. Однако за это время опубликованы интересные работы но изучению механизма явления в целом [23—48] и его отдельных видов [49—57], проявлений калильного зажигания [58—64], влияния качества топлив и масел [65—68] и присадок [68—74]. Предложено несколько методов исследования калильного зажигания в двигателях [75—85]. В СССР исследованиям калильного зажигания были посвящены работы А. Н. Воинова, Д. М. Аронова, М. О. Лернера, Ю. А. Роберт, Ф. В. ТуровскЬго, Н. Ф. Румянцева, С. Г. Нечаева [86—96]. [c.74]


    Закон сохранения энергии. Исходя из общего принципа сохра-испця материи и движения, Ломоносов в 1760 г. сформулировал закон сохранения энергии. Этот закон был экснеримеитально нод-твсржден в 1842 г., когда Роберт Майер определил эквивалентные соотношения между различными видами энергии. Очевидно, что применение закона сохранения энергии имеет смысл ири рассмотрении процессов, происходяии-1х в замкнутых системах. В частности, для химических реакций закон сохранения энергии выразится с л е д I о щим обр а з о м  [c.13]


Библиография для Роберт: [c.195]    [c.89]    [c.113]    [c.126]    [c.88]    [c.171]    [c.172]   
Смотреть страницы где упоминается термин Роберт: [c.139]    [c.13]    [c.130]    [c.32]    [c.89]    [c.283]    [c.290]    [c.91]    [c.114]    [c.447]    [c.86]    [c.6]    [c.94]    [c.119]    [c.172]   
Препаративная органическая фотохимия (1963) -- [ c.134 ]

Основные процессы и аппараты химической технологии Часть 2 Издание 2 (1938) -- [ c.0 ]

Химия и технология газонаполненных высокополимеров (1980) -- [ c.185 , c.257 , c.318 ]




ПОИСК





Смотрите так же термины и статьи:

Бойль, Роберт

Бунзен Роберт

Бунзен, Роберт Вильгельм

Выпарные аппараты Роберта

Гликопротеины и протеогликаны. Роберт Марри

Действие радиоактивных излучений на смазочные материалы. Джеймс Дж. Каррол, Роберт О. Болт

Диффузионная батарея Роберта

Злотский Роберт Аветисович Караханов - мои впечатления из недавнего прошлого

Качественный анализ. Роберт Стивенсон

Монд Роберт

Плазма крови и процесс свертывания. Роберт Марри

Рахманкулов Роберт Аветисович Караханов - выдающийся ученый, талантливый педагог, крупнейший организатор науки и высшего образования

Роберт Бойль. Экспериментальная химия и атомистика

Роберт Марри

Роберт Н. Пиз, химический факультет Принстонского университета, Принстон. Ныо-Джерси Реакция водорода с кислородом

Роберта для кристаллизации

Роберта для механической выпарки

Роберта с горизонтальными трубами

Роберта с паровой рубашкой

Роберта со змеевиками

Роберта сундучный

Сыркин Роберт Аветисович Караханов - профессор кафедры общей и аналитической химии Уфимского нефтяного института



© 2025 chem21.info Реклама на сайте