Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Применение лазеров в экспериментальной спектроскопии

    ПРИМЕНЕНИЕ ЛАЗЕРОВ В ЭКСПЕРИМЕНТАЛЬНОЙ СПЕКТРОСКОПИИ 379 [c.379]

    Применение лазеров в экспериментальной спектроскопии [c.379]

    Несомненно, что в будущем технические возможности исследования спектров комбинационного рассеяния значительно возрастут. Например, исследование химических частиц, изолированных в твердых матрицах, методом спектроскопии КР все еще невозможно из-за слабой интенсивности рассеяния. Использование мощных лазеров в качестве источников возбуждения может решить эту проблему, и работа в этом направлении успешно осуществляется в настоящее время во многих лабораториях ). Применение лазерных источников стимулирует также и поляризационные исследования, что сильно облегчает интерпретацию спектров. Накопление экспериментальных данных приведет к лучшему пониманию различных эффектов и развитию теории, которая в конечном счете объясняет эксперимент. [c.404]


    До недавнего времени спектроскопия комбинационного рассеяния применялась для исследования биополимеров не слишком широко из-за различных экспериментальных трудностей. Даже после прохождения через монохроматор рассеянный свет зачастую содержал значительные примеси возбуждающего света из-за частичного перекрывания соответствующих полос. Эта проблема была в основном решена благодаря применению лазеров, обладающих существенно большей спектральной чистотой (монохроматичностью). Как только были сконструированы лазеры, испускающие свет в достаточно широком диапазоне частот, появилась возможность создания новых эффективных вариантов спист-роскопии комбинационного рассеяния. Предположим, что частота возбудающего света близка к частоте поглощения образца. Тогда поляризуемость при этой частоте будет в основном определяться поляризуемостью поглощающего хромофора (ср. рис.7.20. А). Таким образом, как это качественно видно из уравнений (8.87) — (8.89), интенсивность полос комбинационного рассеяния, отвечающих колебаниям этого фомофора, резко возрастет. Этот эффект носит название резонансного комбинационного рассеяния. Он позволяет изучать колебательные спектры отдельных хромофоров даже при наличии огромного числа других колебаний. [c.123]

    Рамановская спектроскопия основана на исследовании спектров рассеяния света. При столкновении фотона с молекулой может иметь место упругое соударение, при котором фотон не теряет энергию, но изменяет направление своего движения. Такое рассеяние известно под названием рэлеевского и лежит в основе метода определения молекулярных весов соединений. Соударения могут быть также иеупругими они характеризуются тем, что энергия молекулы и фотона изменяется. Поскольку эти изменения носят квантовый характер и определяются колебательными и вращательными уровнями молекулы, анализ спектра рассеянного света (спектра Рамана) дает почти ту же информацию, что и обычный инфракрасный спектр. Необходимо, однако, помнить один момент правила отбора в этих двух случаях различаются. В инфракрасной спектроскопии разрешены одни переходы, в раман-спектро-скопии — другие. Таким образом, имеет смысл снять и тот и другой спектр исследуемого образца. До недавнего времени раман-спектроско-пия находила весьма ограниченное применение из-за малой интенсивности рассеянного света. Однако использование для возбуждения лазеров существенно повысило ценность указанного метода [16—20]. В качестве примера на рис. 13-4,5 приведен раман-спектр 1-метилурацила. Заметим, что интенсивность полосы амид II (относительно полосы амид I) в раман-спектре значительно меньше, чем в инфракрасном спектре поглощения. Особый интерес представляет резонансная раман-спектроскопия [19—21], где используется лазерный пучок с длиной волны, соответствующей длине волны электронного перехода. Рассеяние света при этом часто существенно усиливается на частотах, которые отличаются от частоты лазера на частоту рамановского рассеяния, происходящего на группах хромофора или на группах молекулы, соседствующей с хромофором. Несмотря на определенные экспериментальные трудности, указанный метод позволяет изучать структурные особенности какого-либо конкретного участка макромолекулы. [c.13]



Смотреть главы в:

Техника и практика спектроскопии -> Применение лазеров в экспериментальной спектроскопии




ПОИСК





Смотрите так же термины и статьи:

Лазер

УАС-лазер лазеры

ЭПР-спектроскопия применение



© 2025 chem21.info Реклама на сайте