Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аналитические методы исследования спектроскопия ЯМР

    Область применения ультрафиолетовой спектроскопии, ограниченная в основном ароматическими углеводородами, за последние годы расширяется в связи с развитием синтеза новых ароматических полимеров и полимеров, содержащих двойные связи. Основные достоинства метода ультрафиолетовой спектроскопии при решении аналитических задач и при идентификации углеводородов заключаются в высокой чувствительности, точности и быстроте анализа, а также в простоте экспериментальной методики и аппаратуры и достаточно малом количестве вещества, требуемого для исследования. К числу недостатков метода, в некоторых случаях ограничивающих возможность его аналитического использования, следует отнести наложение спектров и их недостаточную избирательность. В этом отношении колебательные спектры (инфракрасные и комбинационного рассеяния) обладают более широкими возможностями, однако во многих случаях целесообразно использовать одновременно несколько спектральных методов. [c.3]


    Материал учебника несколько шире рамок действующей программы. В него вошли такие разделы физической химии, как основы учения о строении вещества и химической связи, теория спектральных методов исследования. Несколько более широко, чем в обычных курсах физической химии, даны такие разделы, как свойства электролитов, электрохимия, экстракция, перегонка с водяным паром, адсорбция, катализ, получение и стабилизация золей и эмульсий, мицеллообразование и солюбилизация в растворах поверхностноактивных веществ (ПАВ), применение ПАВ в фармации. Рассмотрено влияние дисперсности на свойства порошков. Принимая во внимание аналитическую направленность специальности Фармация и важное значение методов молекулярной спектроскопии для исследования и анализа лекарственных веществ, авторы уделили большое внимание изложению теории физико-химических методов анализа (рефрактометрия, поляриметрия, фотометрия, спектрофо-тометрия, кондуктометрия, потенциометрия, полярография, хроматография, электрофорез и др.). [c.3]

    Ядерный магнитный резонанс (ЯМР) и электронный парамагнитный резонанс (ЭПР) — два метода радиоспектроскопии, позволяющие изучать структуру и динамику молекул, радикалов, ионов в конденсированных и газовой фазах вещества. Спектры ЯМР обладают высокой специфичностью и широко применяются для идентификации соединений, в структурно-аналитических целях, а также для изучения быстрых обменных процессов. Спектроскопия ЭПР — метод исследования парамагнитных частиц и центров, кинетики и механизмов процессов, происходящих с их участием. Особенно большой прогресс в развитии методов спектроскопии ЯМР и ЭПР, достигнутый в последние годы, связан с появлением импульсных фурье-спектрометров, двухмерной спектроскопии и техники множественного ядерного, электрон-ядерного и электрон-электрон-ного резонанса. [c.5]

    Спектральный анализ (эмиссионный) — физический метод качественного и количественного анализа состава вещества на основе изучения спектров. Оптический С. а. характеризуется относительной простотой выполнения, экспрессностью, отсутствием сложной подготовки проб к анализу, незначительным количеством вещества (10—30 мг), необходимого для анализа на большое число элементов. Спектры эмиссии получают переведением вещества в парообразное состояние и возбуждением атомов элементов нагреванием вещества до 1000—10 000°С. В качестве источников возбуждения спектров прп анализе материалов, проводящих ток, применяют искру, дугу переменного тока. Пробу помещают в кратер одного из угольных электродов. Для анализа растворов широко используют пламя различных газов. Качественный н полуколичественныйС. а. сводятся к установлению наличия или отсутствия в спектре характерных линий и оценки по их интенсивностям содержания искомых элементов. Количественное определение содержания элемента основано на Эмпирической зависимости (при малых содержаниях) интенсивности спектральных линий от концентрации элемента в пробе. С. а.— чувствительный метод и широко применяется в химии, астрофизике, металлургии, машиностроении, геологической разведке и др- МетодС. а. был предложен в 1859 г. Г. Кирхгофом и Р. Бунзеном. С его помощью гелий был открыт на Солнце ранее, чем на Земле. Спектроскопия инфракрасная — см. Ифракрасная спектроскопия. Спектрофотометрия (абсорбционная)—физико-химический метод исследования растворов и твердых веществ, основанный на изучении спектров поглощения в ультрафиолетовой (200—iOO нм), видимой (400—760 нм) и инфракрасной (>760 нм) областях спектра. Основная зависимость, изучаемая в С.,— зависимость интенсивности поглощения падающего света от длины волны. С. широко применяется при изучении строения и состава различных соединений (комплексов, красителей, аналитических реагентов и др.), для качественного и количественного определения веществ (определения следов элементов в металлах, сплавах, технических объектах). Приборы С.—спектрофотометры. [c.125]


    Дальнейшее исследование состава высококипящих нефтяных фракции в дополнение к обычно применяемым аналитическим методам включают новейшие методы анализа, такие, как хроматографию, спектроскопию в ультрафиолетовой и инфракрасной областях и в самое последнее время — масс-спектроскопию. [c.31]

    Успешному разрешению этой весьма грудной задачи в последнее время способствовал значительный прогресс в создании сложной и автоматизированной аппаратуры для проведения газожидкостной хроматографии и спектральных методов исследования. Именно эти аналитические приемы позволяют расшифровать состав многокомпонентных нефтяных смесей не только узкого, но и широкого фракционного состава. Так, сочетание газожидкостной хроматографии и масс-спектроскопии дает возможность устанавливать индивидуальный состав бензинов с пределами кипения 35—180°С. [c.61]

    Развитие и широкое распространение синтеза в химическом исследовании не означает сведения на нет или приуменьшения роли анализа. Об этом свидетельствует дальнейшее возникновение и развитие таких новейших и весьма точных аналитических методов исследования, как спектроскопия, рентгеноструктурный анализ, ядерный магнитный резонанс, биохимические методы и т. д. Отделять анализ от синтеза можно лишь весьма условно и главным образом в плане их исторического возникновения и развития, как этапы в разработке и создании единого метода исследования, неразрывными сторонами которого они являются. [c.305]

    Книга посвящена применению одного из кибернетических методов для анализа химического эксперимента. Задача этого метода классификация объекта с помощью ЭВМ. Эта монография — первая по автоматизации научных исследований как в отечественной, так и в переводной литературе. Используются данные наиболее распространенных аналитических методов инфракрасной спектроскопии, спектроскопии ЯМР, масс-спектро-метрии низкого разрешения, полярографии. [c.589]

    Разработка специальных автоматизированных систем для отдельных аналитических задач с самого начала бьша безнадежной. Вид и объем производства аналитического оборудования определяются не только часто преувеличенными потребностями заказчиков, но и интересами изготовителей, которые направлены в основном на массовый выпуск стандартных приборов. Благодаря этому оборудование становится более дешевым, что в свою очередь выгодно и для потребителей. К тому же даже, казалось бы, разные задачи могут быть решены с помощью одних и тех же методов. В большинстве всех анализов, проводимых в производственных лабораториях и в ходе научных исследований, определяются концентрации отдельных компонентов в более или менее сложных смесях. Многие из требований, предъявляемых при этом к качеству анализа, могут быть удовлетворены с помощью поддающихся автоматизации основных аналитических методов фотометрии, спектроскопии, титриметрии. а также электро- и радиохимического анализов. [c.114]

    Группа методов рентгено- и фотоэлектронной спектроскопии, включая оже-спектроскопию, позволяет получать данные об энергиях отрыва электро нов от атомов и молекул как с внешних — валентных оболочек, так и с внутренних оболочек атомного остова. Это эффективные методы структурных исследований и высокочувствительные неразрушающие аналитические методы изучения молекул в газовой фазе, поверхности твердых тел, биологических объектов и полимеров. Особенно широко и продуктивно они применяются в катализе, адсорбции, электронике, а также как методы прямого измерения энергетических характеристик электронных состояний атомов и молекул. Эти характеристики являются уникальными в отношении возможности сопоставления их с теоретическими представлениями и модельными расчетами. [c.133]

    В 1859 г. немецкие ученые химик Р. В. Бунзен (1811—1899) и физик Г. Кирхгоф (1824—1887) опубликовали результаты исследований спектров с помощью впервые примененного ими спектроскопа, что положило начало применению спектрального анализа как аналитического метода. Хотя Р. В. Бунзен и Г. Кирхгоф и не являются первооткрывателями спектров, а их исследования базировались на результатах, полученных их предшественниками, только после работ (1859—1861) этих ученых спектральный анализ сформировался как аналитический метод, который в последующие годы развивался многими учеными и нашел широкое применение в современной аналитике. Вначале он использовался в качественном анализе и лишь после исследований английского химика У. Н. Хартли (1846—1913), который считается основоположником количественного спектрального анализа, (тал применяться для количественных определений. [c.42]

    Еще один переворот в области ЯМР происходит в наши дни. Ои обусловлен внедрением надежных сверхпроводящих магнитов совместно с импульсными методиками и преобразованием Фурье. Разрешение и чувствительность приборов выросли настолько, что исследования можно проводить на микрограммовых количествах вещества. Но, возможио, еще более важное значение имеет развитие импульсных методик, позволяющих в небывалой степени контролировать намагниченность образца и управлять ею. В результате с помощью импульсной спектроскопии ЯМР химики получают, вероятно, более обширную структурную информацию, чем с использованием любого другого отдельно взятого аналитического метода. [c.11]

    Несмотря на развитие инструментальных методов исследования, в настоящее время определение полного углеводородного состава возможно только для легких и средних фракций. Это связано с рядом серьезных ограничений, которые возникают при применении аналитических методов к сложным многокомпонентным углеводородным системам. Взаимодействия молекул между собой приводят к серьезным отклонениям от ожидаемого результата. Так, например, установлено, что обработка данных спектроскопии ЯМР приводит к заниженному количеству ароматических групп, так как не учитывается взаимодействие стабильных свободных радикалов нефтяных сред с протонами органических молекул. Тем не менее, существует ряд общих физико-химических закономерностей, которые позволяют проводить инженерные расчеты процессов переработки углеводородных систем. [c.47]


    За последнее время опубликованы ценные пособия по ГЖХ [22 38 78 92 Березкин В. Г., 1970 г., 1975 г.] и, кроме того, специальные работы по исследованию нефти, к которым рекомендуется обращаться для справок [15, 17, 36, 46, 69]. Успехи в развитии новых комбинированных методов, объединяющих в единую систему газовую хроматографию и химические или инструментальные аналитические методы (масс-спектрометрию, ИК- и ЯМР-спектроскопию, тонкослойную хроматографию и др.), отражены в монографии [49]. [c.193]

    Экспериментальные данные, которые привели к развитию квантовой теории атома водорода, были получены всецело из спектроскопии. Мы уже давали выше определение спектроскопии как исследование поглош,ения и испускания электромагнитного излучения системой. Из спектроскопического эксперимента можно получить информацию двух различных типов о разностях энергий между состояниями (по длинам волн или частотам излучения) и интенсивностях переходов. Каждый спектральный переход характеризуется определенной энергией и интенсивностью. Каждому веш,еству присущ свой характеристический спектр, и это обстоятельство делает спектроскопию чрезвычайно полезным аналитическим методом. [c.168]

    Для некоторых реакций, таких, как распад многих органических соединений, где стехиометрия не соответствует истинному процессу и бывает трудно по изменению давления сказать, идет ли вообще реакция, приходится совмещать манометрическое исследование с анализом продуктов. В настоящее время эти анализы часто проводятся физическими методами, такими, как спектроскопия, масс-спектрометрия, газожидкостная хроматография. Если в реакции не происходит изменения давления, то за ее ходом можно проследить только такими методами. За протеканием реакций в жидкой и твердой фазах или в растворе обычно следят с помощью аналитических методов в процессе реакции можно измерять некоторые физические свойства, например оптическое вращение. При использовании аналитических методов обычно прибегают к отбору проб из системы в различные моменты времени. [c.39]

    Существует очень много работ, посвященных изучению спектров пламен, тем не менее применение спектроскопии для исследования кинетики реакции в пламенах началось после введение фотометрии пламени как основного аналитического метода. До этого интерес к изучению спектров пламен был вызван возможностью показать наличие промежуточных частиц в процессах горения [32]. Экспериментально они определялись по излучению возбужденных частиц и не могли применяться для определения концентрации частиц в основном состоянии. Такие задачи можно было решить с помощью спектра поглощения, однако трудности, связанные с получением большого и однородного пламени, необходимого в этом случае, не позволяли измерять концентрации частиц в основном состоянии до тех пор, пока не появились горелки с многократным прохождением поглощаемого излучения [33]. [c.224]

    Матрица наблюдения является единственным источником информации для решения всех задач ФА, поэтому к ее формированию следует относиться с особой ответственностью. Для определенности будем считать, что в матрице X размерности N X М столбцы будут представлены наборами значений аналитических признаков для конкретного наблюдения. Число наблюдений равно М. В качестве аналитических признаков могут выступать самые различные характеристики исследуемого объекта — это могут быть интенсивности пиков ионных токов с различными значениями отношений массы к заряду miz в масс-спектрометрии, значения оптических плотностей при различных длинах волн в оптической абсорбционной спектроскопии, интенсивности линий или полос люминесценции при различных длинах волн в люминесцентных исследованиях, интенсивности поглощения в различных диапазонах спектров ядерного магнитного резонанса, данные об элементном, функциональном составе и т. п. При этом в состав набора из N признаков, рассматриваемых в качестве аналитических, могут входить одновременно и разнородные данные, т. е. полученные различными методами исследования. Столбец матрицы данных в этом случае может представлять собой последовательность следующих чисел сначала — набор интенсивностей линий в масс-спектре, затем — набор оптических плотностей образца в оптическом диапазоне спектра и т. д. Необходимым условием формирования матрицы наблюдений являются единообразие и полнота набора характеристик для всех столбцов (наблюдений) — все столбцы должны содержать наборы N одинаковых характеристик. [c.73]

    В процессах производства, капролактама, где исходным сырьем является циклогексан, получаемый гидрированием бензола, образуются в качестве промежуточных продуктов многокомпонентные смеси углеводородов, нитросоединений, кетонов, спиртов, моно- и дикарбоновых кислот и других органических соединений, состав которых и чистоту целевых продуктов, как правило, трудно определить классическими аналитическими методами. В этом случае наиболее эффективным методом является газо-жидкостная хроматография, особенно в сочетании с инфракрасной спектроскопией. Комбинированное применение указанных методов оказалось весьма полезным при исследовании состава продуктов производства капролактама, а для их количественного анализа и заводского контроля рекомендованы простые и надежные методы газовой хроматографии. [c.297]

    Обсуждаются возможности использования ИК-спектроскопии как аналитического метода для физико-химических исследований низкотемпературных систем и решения прикладных задач промышленной криогеники. Описана экспериментальная техника. Приводятся результаты исследования спектров растворов в жидком кислороде. [c.131]

    Инфракрасные спектры поглощения могут быть получены для веществ, находящихся в твердом, жидком и газообразном состояниях. Практическая ценность инфракрасной спектрофотометрии как аналитического инструмента для исследования газов хорошо известна. Газы особенно легко изучать методом инфракрасной спектроскопии, поскольку их концентрация регулируется просто изменением давления. К тому же межмолекулярные силы оказывают меньшее влияние на структуру спектров газов, чем на структуру спектров жидкостей и твердых тел. [c.12]

    Наиболее важной характеристикой аналитического метода, используемого при изучении поверхности, является эффективная глубина действия, поскольку метод измерения должен соответствовать изучаемому явлению. Например, связывание с поверхностью, смачивание и катализ затрагивают лишь несколько слоев атомов, а при обработке поверхности закалкой вовлекаются от 10 до 1000 таких слоев. Вот типичные эффективные глубины действия для наиболее важных аналитических методов исследования поверхности рассеяние ионов низкой энергии — один-два слоя атомов, масс-спектрометрия вторичных ионов — зА, оже-спектроскопия — 20А, ионное травление в сочетании с SIMS — lOOA. Лазерная масс-спектрометрия, рамановский микроанализатор и сканирующий электронный микроскоп могут использоваться на глубинах от 1000 до 10 ООО А (т.е. вплоть до 1 микрона). Чем меньше эффективная глубина действия метода, тем [c.239]

    На основании результатов, полученных при обессеривании газойля нефти Среднего Востока методом каталитического гидрирования [64], было высказано предположение, что сернистые соединения исследованного газойля на 30—40% состоят из структур, имеющих в молекуле бензтиофеновое ядро. Наличие характерической полосы для бензтиофена при 9,48 мц в инфракрасном спектре позволило разработать количественный метод определения небольших концентраций бензтиофена в присутствии нафталина при помощи инфракрасной спектроскопии [68]. Точность этого метода иллюстрируется следующим примером. В техническом образце нафталина было определено химико-аналитическим методом содержанием серы, равное 0,30%, что отвечает наличию в смеси примеси 1,26% бензтиофена методом инфракрасной спектроскопии содержание бензтиофена было найдено равным 1,30%. [c.354]

    Методы абсорбционной спектроскопии ввиду их большой чувствительности и избирательности широко применяются при решении многих задач аналитической химии. Эти методы используют при контроле производства и анализе готовой продукции ряда отраслей промышленности химической, металлургической, металлообрабагы-ваюш,ей, в почвенном, биохимическом анализе, а также для определения малых и ультрамалых количеств примесей в веществах особой чистоты (10 —10" %). Для определения больших количеств веществ с точностью, не уступающей гравиметрическим и тит-риметрическим методам, а также при анализе многокомпонентных систем применяют различные варианты дифференциальной спектро-фотометрии. При автоматизации контроля производства рационально использовать метод спектрофотометрического титрования. Методы абсорбционной спектроскопии остаются труднозаменимыми при анализе объектов, содержащих ядовитые летучие соединения, что делает ограниченным применение атомно-абсорбционного метода и методов эмиссионной спектроскопии. Особенно большое значение имеют методы абсорбционной спектроскопии для исследования процессов комплексообразования и получения количественных характеристик комплексных соединений. [c.3]

    Колебательная спектроскопия применяется в современной физике, химии, фармации, в технике. Во вторе гюловине XX столетия сложился целый раздел науки — спектрохимия, включающий разнообразные аспекты использования спектральных методов исследования и анализа для решения химических задач. В химии особенно широко распространены методы ИК-спектроскопии, что обусловлено двумя причинами. Во-первых, применение методов ИК-спектроскопии (часто — в сочетании с методами спектроскопии КР) помогает решать многочисленные задачи структурного или аналитического характера. Во-вторых, в последние десятилетия стали доступными ИЬ -спектрофотометры, выпускаемые промышленностью различных стран, относительно несложные в обраше-нии и удобные для проведения спект зальных измерений. С начала семидесятых годов XX столетия увеличивается и число промышленных спектрометров для получения спектров КР с использованием лазерных источников возбуждения спектров. [c.529]

    В заключение следует остановиться еще на одном аналитическом аспекте метода ЯМР. Как уже отмечалось, ядерная магнитная релаксация является фундаментальным свойством ядерного магнетизма, характеризующим динамику системы спинов. Вместе с тем высокая информативность параметров ядерной магнитной релаксации о свойствах исследуемого вещества, сравнительная простота их экспериментального определения, а также надежность теоретической интерпретации данных дают основание выделить это направление ЯМР в качестве самостоятельного физического метода исследования вещества — ядерную магнитную релаксационную спектроскопию, некоторые интересуюп ие нас особенности которой описаны в 5. [c.738]

    При помощи инфракрасной спектроскопии и аналитических методов можно определять структурные характеристики молекул, содержащихся во всех фракциях битумов, в частности в асфальтеновых, с расшифровкой типа конденсации, длины алифатических цепей, ароматичности и полярности> ИК-спектроскопию применяют также для изучения порфиринов ванадия и никеля, содержащихся в нефтях и битумах, для исследования кислородсодержащих функциональных групп в окисленных битумах. Таким методом показано, что омыляемые вещества битума содержат главным образом эфирные группы и что почти полностью отсутствуют ангидриды и лактоны. Методом селективного поглощения фракций показано различие химического состава битумов, полученных из разного сырья, а также изменение их строения по мере углубления окисления сырья. Растворы в четыреххлористом углероде или сероуглероде компонентов окисленных битумов (типов гель, золь — гель и золь), полученных разделением с использованием бута-нола-1 и ацетона и подвергнутых инфракрасному исследованию в области спектра 2,5—15 мк мкм) с призмой из хлористого натрия, показали, что в сильнодисперги-руемых битумах типа золь самое высокое содержание ароматических колец в каждом компоненте [480], Количество групп СНз почти одинаково в алифатических и циклических соединениях. Метиленовых групп парафиновых цепей значительно больше содержится в соединениях насыщенного ряда. Как правило, их число уменьшается при переходе битума от типа гель к типам золь — гель и золь. [c.22]

    С помощью масс-спектрометрии как аналитического метода решают громадное число качественных и количественных задач. Качественные исследования заключаются в определении структуры неизвестного соединения, в частности, природных веществ, метаболитов лекарственных препаратов и других ксенобиотиков, синтетических соединений. Масс-спектрометрический анализ дает важную информацию для определения молекулярной массы, молекулярной формулы или элементного состава и структуры молекул. Масс-спектрометрия является наиболее чувствительным спектроскопическим методом молекулярного анализа по сравнению с другими рассмотренными методами, такими, как ЯМР- и ИК-спектроскопия. Для количественного анализа масс-спектрометрию используют при разработке арбитражных методов и методов сравнения, при количественном определении, например, полихлордибензодиоксинов (ПХДД) и наркотических препаратов. Масс-спектрометрия сегодня развивается очень быстро, охватывая все более широкие области применения, например анализ биомакромолекул (разд. 9.4.4). [c.255]

    Предложен метод анализа сырья для гидротормозных жидкостей — кубовых остатков производства гликолей и этилцеллозольва, включающий тонкослойную хроматографию в аналитическом и препаративном вариантах, ГЖХ и ИК-спектроскопию. Найдены оптимальные условия хроматофафического разделения гликолей и их моноэфиров при анализе в изотермических условиях с детектором по теплопроводности и в условиях линейного профаммирования температуры колонки на хроматофафе со сдвоенным пламенно-ионизационным детектором. С целью надежной идентификации компонентов анализируемых смесей проведено препаративное вьщеление их методом ГЖХ и тонкослойной хроматофафии с последующим, анализом тремя методами — ГЖХ, тех и ИК спектроскопии. Комбинированное применение современных физических и физико-химических методов исследования к анализу сложных фракций кубовых остатков производства гликолей и этилцеллозольва является наиболее эффективным. Сочетание этих методов дает возможность целенаправленно регулировать компонентный состав гидротормозных жидкостей. [c.61]

    За последнее десятилетие метод ЛМР постепенно занял ведущее положение в биохимических и биофизических исследованиях. Как в органической химии, так и в биохимии ЯМР-спектроскопии является прежде всего аналитическим методом, с помощью которого можно либо подтвердить, либо опровергнуть предполагаемую структуру вновь синтезированных соединений. Кроме этой области примененияЯМР, ориентированной прежде всего на химические приложения метода, можно получить также информацию о пространственном расположеш1и атомов, конфигурации биологически важных молекул и молекулярных комплексов. Такая информация позволяет внести существенный вклад в выяснение механизмов ферментативных превращений и путей прохождения биохимических реакций (табл.2.1). [c.53]

    Люминесценция, или холодное , свечение под действием внешнего облучения — неотъемлемое свойство всех нефтей и природных продуктов их преобразования. Характерной чертой люминесценции является то, что способностью люминесцировать обладают не чистые вещества, а растворы. Нефть — это природный раствор способных к люминесценции веществ — смол в не-люминесцирующих в основном соединениях — углеводородах. Люминесцирующие вещества имеют свои определенные спектры, отражающиеся в цвете люминесценции, их концентрация выражается в интенсивности свечения. На люминесцентных свойствах соединений нефти основан ряд методов исследования люминесцентные спектроскопия и микроскопия, люминесцентно-битуми-нологический анализ и др. Эти методы благодаря очень высокой чувствительности, экспрессности и простоте аналитических приемов широко используются в нефтяной геологии и геохимии. [c.19]

    Для углубленного исследования состава товарных и отработанных (окисленных) пластичных смазок предложены схелш многоступенчатого препаративного разделения и анализа [541, 565—. 570 ], в основу которых входят препаративные методы — ионообменная и жидкостная адсорбционная хроматография, экстракция, а также аналитические методы, газо-жидкостной и тонкослойной хроматографии, ИК-спектроскопия. Сначала проводят качественный. анализ пластичных смазок неизвестного состава (см. разд. III.2.1). При обнаружении в пластичной смазке солей уксусной и других водорастворимых низших жирных кислот разделение и анализ осуществляют по схеме 4, предусматривающей выделение и количественное определение этих кислот. Методически проще проводить исследование пластичных смазок по схеме 5, которая в виде различных модификаций жидкостного хроматографирования на активном и неактивном силикагелях применяется также для определения [c.332]

    Широко применяют оптические методы спектроскопию, спек-трофотометрию, измерение показателя преломления, для оптически активных веществ — полярометрический метод. При изучении реакций в растворах электролитов пользуются методом электропроводности, при изучении изотопного обмена и механизма реакции применяют метод меченых атомов. Для исследования быстрых реакций применяют метод измерения скорости распространения и коэффициента поглощения звука и в особенности ультразвука. При изучении скорости рекомбинации атомов используют метод раздельного калориметрирования (А. А. Ковальский, 1946). В ряде случаев, как, например, изучение быстрых реакций или рекомбинации атомов, химико-аналитические методы вообще неприменимы. [c.18]

    Спектроскопическое определение гидроксильных групп в полиэфирах также основано на измерении ИК-поглощения этих групп, связанного с валентными колебаниями. Специальными исследованиями [69, 70] было установлено, что частота валентных колебаний связи О—Н в гидроксильной группе полиэтилентерефталата составляет 3543 а в карбоксильной группе 3297 см , что особенно важно в связи с плохой растворимостью полиэтилентерефталата. Этот метод был применен для определения гидроксильных групп в полиэтиленоксидах [71, 72] и полиэтиленглико-лях [50]. Однако нри определении содержания гидроксильных групп в полимерах методом ИК-спектроскопии надо учитывать, что частота и интенсивность аналитической полосы ОН-группы могут зависеть от природы растворителя, температуры и концентрации раствора, а возникновение водородных связей приводит к смещению и расширению полосы валентных колебаний гидроксильной группы [73]. [c.120]

    В результате этих исследований были определены константы устойчивости для моноядерных комплексов ионов металлов с различными лигандами от монодентатных неорганических групп [13] до полидентатных амннополикарбоновых ионов и полиаминов [12]. Многие экспериментальные методы, применяемые с 1941 г., например потенциометрия, электропроводность, катализ, жидкостное распределение и метод растворимости, в основном те же, что и в начале столетия. Однако изобретение стеклянного электрода и использование изотопов в аналитической работе позволили применить более совершенные способы определения концентрации водородных ионов и распределения между двумя фазами. Некоторые из более поздних методов (например, спектроскопия) явились следствием развития инструментальной техники, в то время как другие (полярография и ионный обмен) используют явления, почти неизвестные первым химикам, изучавшим равновесие. Достигнуты значительные успехи в методике расчёта констант устойчивости из экспериментальных [c.28]

    К решению этих вопросов лучше всего подойти с позиций химического моделирования. В исследованиях нужно шире применять физические и химико-аналитические методы — инфракрасную, ультрафиолетовую, эмиссионную и масс-спектроскопию, рентгенострук- [c.4]

    В результате поглощения энергии при воздействии на образец рентгеновского излучения атомы переходят в возбужденное состояние. Возвращение атомов в устойчивое состояние сопровождается выделением шбытка энергии в виде рентгеновского и светового излучения, а также в виде кинетической энергии электронов. Это явление используют во многих аналитических методах. Рентгеновское излучение чаще всего используют при флуоресцентных реятгеноспектральных исследованиях. Метод рентгеновской фотоэлектронной спектроскопии позволяет получать данные об энергии связи электронов в атомах и молекулах на основании изучения спектров кинетической энергии испускаемых электронов (фотоэлектронсв). [c.23]

    Методы концентрирования. Если применение обычных методов хроматографического разделения недостаточно (например, вследствие невысокой чувствительности детектора или нечеткого разделения примеси и основного компонента), то нримен.чют специальные методы подготовки пробы (в частности, предварительное концентрирование, отделение нримеси от основного комнонента и т. п.). Концентрирование применяют также в тех случаях, когда для идентификации примесей используют пехроматографические методы (спектральные оптические методы, масс-спектроскопия, ядерный магнитный резонанс и т. п.). Поэтому часто необходимым этапом проведения аналитического исследования мономеров и растворителей является концентрирование примесей. [c.67]

    В сборнике дано подробное описание оригинальных и усовершенствованных аналитических методов, подвергнутых тщательной экспериментальной проверке метод анализа индивидуального состава бензинов путем газо-жидкостной капиллярной хроматографии, компонентный микроанализ нефтей и битумов, групповой микрохроматографический. анализ средних и высших фракций нефти. Описываются методы группового выделения сульфидов в виде сульфоксидов из фракций нефти, разделение и характеристика смесей сульфидов ц их производных аналитической и препаративной тонкослойной хроматографией в сочетании с газо-жидкостной хроматографией и анализом стереомоделей изомеров. Разработана аппаратура и метод полуавтоматического экспресс-анализд на серу и галоген. Приводится методика определения азота, углерода и водорода с газохроматографическим окончанием анализа, а также метод количественного извлечения азотистых оснований из нефти и их получение в виде концентратов. Сборник содержит данные по применению спектроскопии (ИК-, КРС- и УФ-) к исследованию структурно-группового состава масел и к изучению насыщенных, непредельных и ароматических сульфидов и их смесей. [c.2]

    Таким образом, в изданных к настоящему времени монографиях работы последних 5—7 лет не рассмотрены. Вместе с тем именно за эти годы инфракрасная спектроскопия поверхностных соединений и адсорбционных комплексов развилась особенно сильно и выявились перспективы ее количественных применений в комплексе с другими методами. Эти особенности развития инфракрасной спектроскопии авторы старались учесть в настоящей книге, посвященной исследованиям методом инфракрасной спектроскопии химии поверхности и адсорбции окислами кремния и алюминия, аморфными алюмосиликагелями, а также кристаллическими пористыми алюмосиликатами — цеолитами. Таким образом, в книге рассмотрено сравнительно небольшое число окислов — окись кремния и алюминия, а также некоторые их аморфные и кристаллические соединения. Эти адсорбенты — аэросилы, аэросилогели (силохромы), силикагели, пористые стекла, алюмогели, алюмосиликатные катализаторы и различные катионированные и декатионированные цеолиты — весьма важны как для изучения взаимодействий при молекулярной адсорбции и хемосорбции, так и для практического использования в аналитической и препаративной хроматографии, в адсорбционных разделениях, в частности в осушке, в катализе и многих других важных областях технологии. [c.8]

    Такие стабилизаторы, как антиоксиданты, дезактиваторы металла и УФ-погло-тители добавляются в полимеры для снижения деструкции как на стадии производства, так и в течение всего срока службы полимерного изделия. Для исследования деструкции полимера или совместимости между химикатами-добавками и полимерами важно владеть аналитическим методом, который дает как идентификацию, так и количественную меру химикатов-добавок в полимере. Фурье-инф-ракрасная спектроскопия [15,16], УФ-спектроскопия [17], газовая хроматография, жидкостная хроматография высокого разрешения (ЖХВР) и дифференциальная сканирующая калориметрия (ДСК) — все эти методы могут применяться как аналитические инструменты для идентификации и определения концентрации растворенных стабилизаторов и их однородного распределения. Фурье-инфракрасная спектроскопия и УФ-спектроскопия являются самыми удобными методами, так как их можно применять для анализа образца, не нарушая его морфологию в твердом состоянии. Кроме того, можно выявлять деструкцию или изменения на их ранней стадии благодаря чувствительности методик. Далее, коэффициент диффузии химикатов-добавок можно оценить с помощью дисков [18]. Диск, содержащий хи-микаты-добавки, помещается в центр стопы дисков без добавок. В течение определенного времени и при определенной температуре происходит диффузия. Затем с помощью спектроскопических измерений определяется концентрация добавок в каждом из дисков. Зная толщину дисков и концентрацию химиката-добавки, определяется коэффициент диффузии. [c.257]

    В предыдущих главах уже было показано, что точная современная научная аппаратура обязательно нужна для контроля за окружающей средой и для применения химии в экономике. Методы исследования поверхности имеют рещаю-щее значение для достижения новых успехов в катализе, на котором основано столько химических производств. Хроматография вместе с масс-спектрометрией и лазерной спектроскопией превратилась в повседневное средство аналитического контроля. Инфракрасная спектроскопия — это типичный спектральный метод, нашедщий эффективное применение в контроле за окружающей средой, а также в научных исследованиях. [c.236]


Библиография для Аналитические методы исследования спектроскопия ЯМР: [c.14]   
Смотреть страницы где упоминается термин Аналитические методы исследования спектроскопия ЯМР: [c.26]    [c.6]    [c.411]    [c.631]    [c.402]    [c.179]   
Фенольные смолы и материалы на их основе (1983) -- [ c.100 ]




ПОИСК





Смотрите так же термины и статьи:

Метод аналитические



© 2025 chem21.info Реклама на сайте