Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дипольный момент правила отбора в спектра

    Переход между двумя уровнями возможен только при изменении электрического дипольного момента системы или ее квадрупольного и т. п. момента, магнитного момента, поляризуемости, а также при возбуждении молекулы ударом электрона, атома, иона. Каждому из перечисленных процессов соответствует своя величина р. Наиболее часто в формуле (43.6) величина р — электрический дипольный момент системы. Тогда величина У " " называется дипольным моментом перехода. В дальнейшем, где специально не оговаривается, речь будет идти именно о спектрах, связанных с электрическим дп-польным моментом перехода (спектры поглощения и испускания). Если дипольный момент перехода равен нулю, электрическое дипольное излучение или поглощение невозможно, соответствующий переход запрещен. Из (43.6) следуют так называемые правила отбора, позволяющие предсказывать невозможность тех или иных переходов. [c.144]


    Колебательные спектры поглощения дают только те молекулы, у которых при колебаниях изменяется дипольный момент гомоядерные молекулы к таким молекулам не принадлежат. Правило отбора при гармонических колебаниях имеет вид Аи = 1 (знак, относится к поглощению энергии). [c.345]

    Наиболее интенсивные линии спектра связаны с изменением дипольного момента под действием электрической компоненты излучения (дипольное поглощение или излучение). Переходы, связанные с изменением квадрупольного момента под действием электрического поля и дипольного момента под действием магнитного поля (квадрупольное и магнитное дипольное излучение или поглощение), имеют на шесть порядков более низкую интенсивность. Для свободных атомов и ионов наиболее строгим правилом отбора является правило Лапорта-. в дипольном излучении разрешены переходы между уровнями различной четности, а в квадру-польном и магнитном — между уровнями одинаковой четности. [c.226]

    Поскольку квантовое число К соответствует моменту вращения молекулы вокруг оси С , а это вращение не вызывает изменения дипольного момента, правило отбора для К есть АД =0. Для / сохраняется прежнее правило отбора А/ = -Ы. Поэтому вращательные спектры будут определяться уравнением (У.12), т. е. переходами между вращательными состояниями относительно оси, например Ь, перпендикулярной оси С молекулы. При таком вращении изменяется направление дипольного момента молекулы в пространстве. [c.88]

    Гомонуклеарные молекулы Hj, Oj, lj и т. п. не имеют дипольного момента, и при колебаниях он не появляется. Поэтому = О и эти молекулы неактивны в спектрах поглощения и испускания. Гетеронуклеарные молекулы типа НС1, НВг, КС1 и т. д., напротив, активны в этих спектрах, так как их дипольные моменты изменяются при колебаниях, и тем сильнее, чем более они полярны. Из вида волновых функций 1 5 ол следует правило отбора для гармонического осциллятора переходы с поглощением или испусканием света возможны только между соседними уровнями  [c.159]

    Условием для получения колебательных и вращательных спектров поглощения или испускания является изменение дипольного момента, тогда как переходы, наблюдаемые в спектрах Ki связаны с изменением поляризуемости молекул. Благодаря различию правил отбора ИК-спектроскопия и спектроскопия КР существен но дополняют друг друга. [c.267]

    Так как кинетическая энергия не квантуется, то при переходах с поглощением энергии E>Dq эта энергия может принимать уже не строго определенные, а любые значения. В ИК-спектре этому соответствует переход от линейчатого поглощения к сплошному. По частоте, соответствующей границе сплошного поглощения, легко определить энергию диссоциации молекулы. Важное правило отбора в ИК-спектрах связано с разрешенностью переходов между колебательными уровнями при поглощении ИК-излучения. Активны в ИК-спектрах только те колебания, которые сопровождаются смещением центра электрических зарядов молекулы, т. е. изменением дипольного момента. Поэтому колебания таких молекул, как СО, NO, НС1, проявляются в ИК-спектрах, а колебания симметричных молекул Нг, N2, СЬ не проявляются. [c.201]


    Для молекул типа асимметричного волчка при определении правил отбора для вращательного спектра надо пользоваться функциями (134,19). Тогда можно показать, что 1-переходы между вращательными состояниями могут возникать только в том случае, когда молекула обладает собственным электрическим дипольным моментом. При этом правила отбора для пол- [c.662]

    ХЛ==Гф . Если удовлетворяются правила отбора для перехода Е, соответствующего некоторой колебательной частоте, то говорят, что эта частота активна в инфракрасной области спектра, так как она будет присутствовать в спектрах испускания и поглощения электромагнитных волн соответствующей частоты, Такие колебания всегда сопровождаются изменением дипольного момента молекулы. [c.664]

    Инфракрасная спектроскопия и спектроскопия комбинационного рассеяния. Оба эти метода дают возможность установить характеристические частоты колебаний молекулы. Для большинства молекул полная совокупность колебательных частот может быть получена только при совместном использовании и ИК-спектра, и спектра КР. Это связано с различием интенсивности полос в этих спектрах для разных типов колебаний. Такое различие особенно велико у молекул, обладающих высокой симметрией. В этих случаях некоторые полосы в ИК-спектрах могут иметь коэффициент поглощения, близкий к нулю, а другие — сравнительно низкую интенсивность в спектре КР. Говоря более строго, симметрия молекулы может привести к появлению правил отбора. Для переходов в ИК-спектре и спектре КР они различны, так как интенсивность полосы в обоих случаях зависит от различных электрических свойств молекулы. Для ИК-переходов необходимо изменение дипольного момента при колебании, для переходов в спектре КР—изменение поляризуемости. Отсюда следует, что в двух спектрах одновременно могут проявиться лишь немногие частоты, и потому нужны оба спектра. [c.68]

    Колебательно-вращательные спектры охватывают не только многоатомные молекулы с постоянным дипольным моментом. Колебательные спектры с низким разрешением присутствуют в инфракрасной области и области рамановских частот. Правила отбора, определяющие число линий рамановских и инфракрасных спектров, очень сильно зависят от симметрии. Так, например, линейная трехатомная молекула ВАВ обладает двумя сильными линиями в инфракрасном спектре и только одной сильной линией (иной частоты) в раман-спектре. Оба спектра дополняют друг друга. Молекула, обладающая центром симметрии, всегда имеет сильную линию в раман-спектре и не имеет ее в инфракрасном спектре [c.13]

    Следует также остановиться на возможных изменениях интенсивности полос поглощения при адсорбции вследствие нарушения под влиянием адсорбционного поля так называемого правила отбора. Как уже было отмечено, интенсивность полос в инфракрасном спектре определяется изменением дипольного момента молекулы при колебании по соответствующей нормальной координате. Однако, особенно в случае симметричных молекул, возможно существование колебаний, и не приводящих к изменению дипольного момента (рис. 3). Такие колебания в основном приводят к изменению поляризуемости молекул и проявляются в спектрах комбинационного рассеяния. [c.57]

    Аналогично можно показать, что молекула будет иметь вращательный спектр в далекой инфракрасной или микроволновой области, если ее дипольный момент меняется относительно направления падающего излуче-ния при вращении молекулы как целого. Для этого молекула должна обладать постоянным дипольным моментом. Поэтому общее правило отбора для появления чисто вращательного спектра записывается в виде [c.81]

    Для того чтобы подсчитать вероятности перехода и, следовательно, определить интенсивности и правила отбора для линий в спектре комбинационного рассеяния согласно квантовой теории, необходимо рассмотреть матричные элементы индуцированного дипольного момента [c.130]

    Идеальный случай такого закономерного распределения частот схематично показан на рис. 9,Л [59, 95]. Вся сумма значений частот представляет схематичное решение механической задачи о колебаниях, но появление этих частот в реальных спектрах зависит также от того, что при некоторых колебаниях происходят изменения дипольного момента (активны в инфракрасном спектре), а при некоторых — поляризуемости (активны в спектре комбинационного рассеяния). На рис. 9, А соответствующими символами показаны также правила отбора в отношении маятниковых колебаний СНз, а на рис. 9,Б представлено фактическое распределение полос, наблюдаемых в инфракрасных спект- [c.382]

    Другое наблюдаемое явление, связанное с интенсивностями полос поглощения, заключается в появлении в ИК-спектре физически адсорбированных молекул полос поглощения, соответствующих запрещенным переходам. Правила отбора являются следствием симметрии молекул, и полоса поглощения запрещена в ИК-спектре, когда симметрия колебания такова, что изменения дипольного момента не имеют места. При адсорбции на поверхности молекула подвергается воздействию анизотропных сил поля, так что симметрия нарушается, приводя к тому, что правила отбора, действующие для ИК-спектра молекулы в газовой фазе, оказы- [c.336]


    На практике изучают спектры поглощения электромагнитного излучения с частотами, близкими к частотам колебаний атомов, — инфракрасный (ИК) диапазон (10—10000 сМ ), спектры неупругого (с рождением или уничтожением фонона) рассеяния электромагнитного излучения видимого или ультрафиолетового (УФ) диапазона (комбинационное, или рамановское, рассеяние), рентгеновского излучения или тепловых нейтронов. Инфракрасная спектроскопия и спектроскопия комбинационного рассеяния (КР) позволяют достичь максимального разрешения по энергиям, но из-за малого волнового числа первичного излучения дают информацию (если пренебречь многофононными эффектами, имеющими весьма малую интенсивность) только о колебательных состояниях вблизи центра зоны Бриллюэна (оптическим модам при квазиимпульсе, равном нулю). Кроме этого ограничения в обоих методах существуют правила отбора по симметрии ё спектрах поглощения (ИК спектрах) наблюдаются колебательные моды, характеризующиеся изменением дипольного момента, а в спектрах КР — колебания, при которых изменяется квадрупольный момент. Таким образом, эти две методики дополняют друг друга, и для получения более полной информации о колебательном спектре изучаемого вещества желательно иметь оба спектра. В то же время часть колебаний оказывается неактивной ни в ИК спектрах, ни в спектрах КР (так называемые немые моды). Применение для исследования колебательной структуры твердых тел неупругого рассеяния нейтронов лишено всех упомянутых выше ограничений, но в значительной степени ограничено существенно меньшим разрешением и необходимостью много большего количества вещества для проведения эксперимента. Так, спектры неупругого рассеяния нейтронов на различные углы позволяют, в принципе, определить дисперсионные кривые для всех колебательных мод. Однако низкое разрешение приводит к тому, что подобный анализ возможен лишь для относительно простых систем, а в большинстве случаев возможно рассмотрение только усредненного по всей зоне Бриллюэна суммарного спектра всех колебательных мод. [c.272]

    Более сложный случай представляет собой молекула двуокиси углерода, для которой правило 3 — 5 предсказывает четыре нормальных колебания. В молекуле СОг двум вырожденным колебаниям (уг на рис. 7-6) отвечает одна полоса. Эти колебания деформационные и происходят под прямыми углами друг к другу. В дальнейшем мы увидим, какую пользу в предсказании числа ожидаемых вырожденных полос оказывают соображения симметрии. У более сложных молекул некоторые из нормальных колебаний случайно могут быть вырожденными, когда две частоты колебаний оказываются равными. Такое вырождение предсказать трудно, и оно часто вызывает дальнейшие осложнения. Отнесение полос СОг более затруднительно, чем для 50г, поскольку в инфракрасном спектре и спектре комбинационного рассеяния возникает большее число полос. Полосы при 2349, 1340 и 667 см относятся соответственно к Уз, VI и что детально обосновано в книге Герцберга [1]. В рассмотренном примере основные частоты — три наиболее интенсивные полосы в спектре. В некоторых случаях при колебании происходит лишь небольшое изменение дипольного момента и основная частота слабая (см. в тексте первое правило отбора). [c.214]

    Те же сведения, которые получаются из микроволновых спектров, можно получить и из вращательных спектров комбинационного рассеяния, где нет правила отбора, требующего наличия постоянного дипольного момента. Вследствие этого из вращательных спектров комбинационного рассеяния были получены очень точные данные о двухатомных молекулах из одинаковых атомов. Экспериментально полосы обнаруживались в виде стоксовых линий с частотами, соответствующими вращательным переходам. [c.234]

    Для определения активности колебаний в инфракрасном спектре и в спектре комбинационного рассеяния к каждому нормальному колебанию следует применить правило отбора. С квантовомеханической точки зрения П—4] колебание активно в инфракрасном спектре, если при колебании изменяется дипольный момент молекулы, и колебание активно в спектре комбинационного рассеяния, если при колебании изменяется поляризуемость молекулы. Из рассмотрения форм нормальных колебаний многоатомных молекул непосредственно не следует вывод об изменении дипольного момента или поляризуемости. Как будет показано ниже, однозначное решение этого вопроса дает применение теории групп. [c.41]

    Интерпретация и применение. К. с. многоатомных молекул отличаются высокой специфичностью и представляют сложную картину, хотя общее число экспериментально наблюдаемых полос м. б, существенно меньше возможного их числа, теоретически отвечающего предсказываемому набору уровней. Обычно осн. частотам соответствуют более интенсивные полосы в К. с. Правила отбора и вероятность переходов в ИК и КР спектрах различны, т.к. связаны соотв. с изменениями электрич. дипольного момента и поляризуемости молекулы при каждом нормальном колебании. Поэтому появление и интенсивность полос в ИК и КР спектрах по-разному зависит от типа симметрии колебаний (отношения конфигураций молекулы, возникающих в результате колебаний ядер, к операциям симметрии, характеризующим ее равновесную конфигурацию). Нек-рые из полос К. с. могут наблюдаться только в ИК или только в КР спектре, другие-с разной интенсивностью в обоих спектрах, а нек-рые вообще экспериментально не наблюдаются. Так, для молекул, не обладающих симметрией или имеющих низкую симметрию без центра инверсии, все осн. частоты наблюдаются с разной интенсивностью в обоих спектрах, у молекул с центром инверсии ни одна из наблюдаемых частот не повторяется в ИК и КР спектрах (правило альтернативного запрета) нек-рые из частот могут отсутствовать в обоих спектрах. Поэтому важнейшее из применений К. с.-определение симметрии молекулы из сопоставления ИК и КР спектров, наряду с использованием др. эксперим. данных. Задаваясь моделями молекулы с разной симметрией, можно заранее теоретически рассчитать для каждой из моделей, сколько частот в ИК и КР спектрах должно наблюдаться, и на основании сопоставления с эксперим. данными сделать соответствующий выбор модели. [c.431]

    Полные таблицы характеров, подобные табл. 8, уже получены для всех точечных групп. Поэтому на практике нет необходимости в таком подробном рассмотрении, какое проведено здесь. В приложении I даны полные таблицы характеров представлений для тех точечных групп, которые часто встречаются в этой книге. Из этих таблиц непосредственно получается правило отбора для инфракрасных спектров и спектров комбинационного рассеяния колебание активно в инфракрасном спектре или в спектре комбинационного рассеяния, если оно относится к тому же типу симметрии, к которому принадлежит одна из компонент соответственно дипольного момента или поляризуемости. Например, из таблицы характеров представлений точечной группы Он непосредственно следует, что в инфракрасном спектре активны только колебания типа а в спектре комбинационного рассеяния активны только колебания типов Aig, Eg и F2g, так как в случае этой точечной группы компоненты дипольного момента или поляризуемости относятся соответственно к этим типам симметрии. Из рассмотрения таблиц характеров представлений видно, что 1) в случае любой точечной группы полносимметричное колебание является активным в спектре комбинационного рассеяния и 2) в случае точечных групп, имеющих центр симметрии, колебания, активные в инфракрасном спектре и спектре комбинационного рассеяния, относятся всегда соответственно к и- и g-типам. [c.68]

    Исследование чисто вращательных спектров является мощным методом определения молекулярных параметров простых молекул, которые можно получать в газовой фазе. Для того чтобы молекула могла дать чисто вращательный спектр, должно выполняться общее правило отбора, т. е. молекула с > должна обладать постоянным дипольным моментом. [c.47]

    Правила отбора, которые определяют число линий, полученных из инфракрасных или рамановских спектров, в большой степени зависят от симметрии молекулы. Например, линейная трехатомная молекула ХАХ имеет две интенсивные линии в инфракрасном спектре и только одну интенсивную линию в рамановском спектре. Два спектра данной молекулы называются дополняющими или взаимно исключающими друг друга, если сильная линия одного из них не появляется в другом. Теоретически это возможно, когда молекула имеет центр симметрии. Если то же самое колебание дает линии как в инфракрасном, так и в рамановском спектре, то в молекуле нет центра симметрии. Так, появление трех линий в обоих спектрах 50г исключает линейность этой молекулы. В общем случае можно сказать, что любой тип колебаний, который связан с изменением дипольного момента молекулы, должен дать линию поглощения в инфракрасном спектре, в то время как любое колебание, которое вызывает изменение поляризуемости молекулы, должно дать рамановское смещение. [c.189]

    Микроволновая вращательная спектроскопия возникла во второй половине 40-х годов, поскольку в это время был создан источник радиоволн в диапазоне частот 10...40 ГГц. Именно в этой области расположен чисто вращательный спектр свободных молекул. Основные условия для получения микроволнового вращательного спектра состоят в том, чтобы молекулы имели собственный дипольный момент, не равный нулю, и правила отбора разрешали соответствующие переходы между вращательными уровнями энергий. [c.84]

    Правила отбора во вращательном спектре комбинационного рассеяния определяются свойствами тензора поляризуемости и волновых функций г )г, а также характером колебательного уровня молекулы. Важным следствием уравнений ( 1.15) и ( 1.17) является то, что комбинационное рассеяние не связано с наличием у молекулы собственного дипольного момента. [c.117]

    В принципе, не обязательно возможны все мыслимые переходы между различными уровнями. Правила отбора разрешенных переходов, как и интенсивность соответствующих им полос в спектре,, определяются свойствами волновых функций Тгъ характеризующих состояния, между которыми происходит переход, и квантово-механическими операторами собственного или наведенного дипольного момента, которые совпадают с классическими выражениями этих электрических моментов. [c.177]

    Симметрия. молекулярной орбитали во многом определяется симметрией равновесной конфигурации молекулы. Следовательно, от симметрии молекулы зависят правила отбора в спектрах поглощения и испускаш1я и распределение электронной плотности. Молекулы, обладающие центром симметрии (Д, <Х и др.), — неполярны, например Вер2 и, неполярны также молекулы высокой симметрии, хотя и не имеющие центра, симметрии, как, например, тетраэдрические СН4, СС1(4 и другие (3 ), плоские ВРз, А1Рз и другие (1>з ). Если равновесная конфигурация молекулы известна, то существование или отсутствие дипольного момента может быть точно предсказано на основании соображений симметрии при помощи теории групп. В свою очередь измерение дипольного момента может указать на геометрию равновес- [c.176]

    В ИК спектре поглощения двухатомных молекул колебат. частоты наблюдаются только у гетероядерных молекул (НС1, N0, СО и т. п.), причем правила отбора определяются изменением их электрич. дипольного момента при колебаниях. В спектрах КР колебат. частоты наблюдаются для любых двухатомных молекул, как гомоядерных, так и гетероядерных (N , О2, N и т. п.), т. к. для таких спектров правила отбора определяются изменением поляризуемости молекул при колебаниях. Определяемые из К. с. гармонич, постоянные и v , постоянные ангармоничности, а также энергия диссоциации Од-важные характеристики молекулы, необходимые, в частности, для термохйм. расчетов. Изучение колебательно-вращат. спектров газов и паров позволяет определять вращат. постоянные (см. Вращательные спектры), моменты инерции и межъядерные расстояния двухатомных молекул. [c.431]

    Разрешенные переходы между дискретными колебательными состояниями определяются соответствуюшими правилами отбора. Основное из них гласит, что переход меШу двумя колебательными состояниями, связанный с поглощением соответствующего фотона, возможен только в том случае, если прн колебании изменяется дипольный момент молекулы. Поэтому валентные колебания двух одинаковых атомов в двухатомной молекуле (например, в Вгг) не приводят, к появлению соответствующей колебательной полосы в ее спектре. Второе основное правило отбора гласит, что разрешены переходы только между колебательными состояниями, для которых различие в колебательном квантовом числе равно единице, т, е. Аи = zf 1. Как уже было указано, это правило отбора обусловлено тем, что обертонные полосы обладают гораздо более низкой интенсивностью, чем основные. [c.162]

    Кумулены Н2(С) Н2 в основном состоянии не могут вызвать инфракрасное поглощение для чисто вращательного перехода, так как они не обладают постоянным дипольным моментом. Однако хадгда они достигают вырожденного колебательного уровня, начинает действовать эффект Яна — Теллера, так что вырождение снимается за счет искажения молекулы. Искаженные частицы должны обладать дипольным моментом и обнаруживать инфракрасное поглощение из-за вращательных переходов [340]. В эффекте Рамана вращательные переходы разрешены. Из расстояния между линиями и теоретически выведенных правил отбора определена вращательная постоянная В, которая обратно пропорциональна моменту инерции, а тот, в свою очередь, включает междуядерные расстояния. Связь между вращательным спектром и междуядерными расстояниями следующая  [c.692]

    Хотя спектроскопические проявления физической адсорбции, как было показано, аналогичны изменениям спектра в процессе конденсации жидкой фазы, в то же время на спектр адсорбированных молекул оказывает дополнительное влияние асимметричность силового поля поверхности твердого тела. В отличие от раствора, где молекула со всех сторон окружена растворителем, на поверхности молекула испытывает одностороннее действие окружающей среды. Это асимметричное действие вызывает искажение структуры молекулы, при котором в инфракрасном спектре начинают проявляться определенные колебания, первоначально запрещенные правилами отбора с точки зрения симметрии. На рис. 125 представлена примерная форма валентных колебаний СН молекулы этилена и приведены частоты соответствующих полос поглощения газовой фазы в инфракрасном спектре и в спектре комбинационного рассеяния. В газовой фазе только колебания Vg И Vil сопровождаются изменением дипольного момента и вызывают поглощение в инфракрасном спектре. Симметричные колебания Vi и V5 не имеют полос поглощения в инфракрасном спектре, однако они вызывают изменение поляризуемости и проявляются поэтому в спектре комбинационного рассеяния. Правила отбора, определяющие появление полос поглощения в спектре, могут нарушаться, если молекула попадает в асимметричное силовое поле поверхности адсорбента. Этим объясняется появление полосы Vi при ЗОЮ см (рис. 124, табл. 44) в спектре этилена, адсорбированного на пористом стекле (Шеппард и Иейтс, 1956). Наряду с этой полосой наблюдались две интенсивные полосы поглощения при 3100 и 2980 см колебаний Vg и Vil, которые разрешены в инфракрасном спектре. При более высоком разрешении Литтл (1961) наблюдал в спектре этилена, физически адсорбированного на пористом стекле, четвертую полосу около 3070 см (рис. 126). Эта полоса была приписана валентному колебанию СН (V5), которое обычно появляется только в спектре комбинационного рассеяния (см. рис. 125). Отнесение этой полосы к колебанию, проявляющемуся в спектре комбинационного рассеяния при 3108 и 3075 см для газообразного и жидкого этилена соответственно, впервые было сделано Стойчевым (1953). Однако на основании проведенных позднее исследований инфракрасного спектра твердого этилена (Довс, 1962) полосу поглощения при 3066 см следует отнести не к валентному колебанию СН (Vs), а к составному тону более низкочастотных колебаний. [c.372]

    Существуют важные требования симметрии в отнощении правил отбора для обертонов и комбинационных полос. Мы проиллюстрируем их на примере молекулы ВРз с симметрией О н-Из таблицы характеров для группы следует, что симметричное валентное колебание VI типа Ау должно быть неактивным в инфракрасном спектре (при этом колебании не происходит изменения дипольного момента). Тип симметрии комбинационной полосы У1 + Уз (где Уз относится к типу Е ) определяется произведением АгУ Е Е. Комбинационная полоса активна в инфракрасном спектре. Колебание Уг относится к типу симметрии 2 и активно в инфракрасном спектре. Обертон 2уг принадлежит к типуЛз X Лг = Д и неактивен в инфракрасном спектре, а обертон Зv2 относится к симметрии Лг и наблюдается в инфракрасном спектре. Такое поведение является существенным подтверждением правильности данного отнесения и плоского строения молекулы. Оно служит также прекрасным примером, на котором можно продемонстрировать требования симметрии для обертонов и комбинационных полос. [c.231]

    У молекул типа симметричных волчков, колебания которых связаны с наличием переменных дипольных моментов, параллельных главной оси вращения, наблюдаются параллельные полосы поглощения с Р-, Q- и Р-ветвями. Примерами параллельных полос могут служить полосы симметричных валентных и деформационных колебаний С—Н в СНзВг. Тип спектра при наличии параллельной полосы изображен на рис. 7-18. В этом примере вращательная тонкая структура / -ветви неразрещена. Параллельная полоса молекулы типа симметричного волчка похожа на перпендикулярную полосу линейной молекулы. У перпендикулярных полос поглощения молекул типа симметричного волчка обнаруживается несколько Р-ветвей, часто перекрывающихся с неразрешенными Р- и Р-ветвями. Деформационное колебание С—С1 в СНзС представляет пример перпендикулярной полосы молекулы типа симметричного волчка. Типичный для такого случая спектр изображен на рис. 7-19. У сферического волчка правило отбора для перпендикулярной полосы имеет вид [c.247]

    По полосам поглощения, которые лежат в инфракрасной области спектра, измеряют расстояния между колебательными уровнями энергии. Если бы колебания молекул были истинно гармоническими (т. е. если бы возвращающая сила была пропор-щюнальна квадрату смещения атомов от положения равновесия), то значения энергии, соответствующие колебательным уровням, давались бы выражением =/гVg(л-f-1/2), где Vg—основная частота колебаний, а п может принимать значения О, 1, 2, 3 и т. д. (Это известно из любого учебника квантовой механики.) Правила отбора допускают переходы только между соседними уровнями. В результате частоты поглощения V, соответствующие колебательным переходам, будут точно совпадать с основными частотами г,. Однако в действительности колебания молекул не являются истинно гармоническими, поэтому это совпадение на самом деле только приблизительное. Тем не менее для каждого основного колебания должна наблюдаться одна полоса поглощения и V должно иметь значение, очень близкое к значению Vf,. Дополнительное правило отбора для поглощения инфракрасного излучения сводится к тому, что наблюдаются только те колебания, при которых меняется дипольный момент молекулы. [c.93]


Смотреть страницы где упоминается термин Дипольный момент правила отбора в спектра: [c.276]    [c.50]    [c.154]    [c.162]    [c.50]    [c.154]    [c.162]    [c.420]    [c.420]    [c.171]    [c.222]    [c.219]    [c.173]    [c.215]   
Физические методы в неорганической химии (1967) -- [ c.208 ]




ПОИСК





Смотрите так же термины и статьи:

Дипольный момент

Правила отбора



© 2024 chem21.info Реклама на сайте