Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вакуумные системы термоядерных установок

    Предел достигаемого давления определяется скоростью миграции молекул газа на стенках вакуумной системы. При сверхвысоком вакууме возрастает температурная десорбция газов и паров с поверхности, в результате чего возникает поверхностная миграция с определенным коэффициентом диффузии и соответствующая этому движению спонтанная десорбция. Сверхвысокий вакуум применяют в термоядерных установках и ускорителях он необходим для получения тонких пленок, применяемых для исследований в ядерной физике, физике твердого состояния и полупроводников. При получении сверхвысокого вакуума необходимо, чтобы не было загрязнений системы углеродсодержащими продуктами, которые могут попадать в систему в виде паров масла из масляных насосов. Чтобы обеспечить такие требования, применяют различные ловушки или масляные насосы заменяют ртутными, причем это относится как к высоковакуумным насосам, так и к насосам, создающим предварительное разрежение. [c.398]


    Бурное развитие и все более расширяющиеся области применения вакуумного оборудования, например для обеспечения технологических процессов в экспериментальных термоядерных установках, имитаторах космического пространства, ускорителях на встречных пучках, в микроэлектронике, физике твердого тела и других сферах, обусловливают разнообразие и индивидуальность физических и эксплуатационных факторов, увеличивающуюся структурную усложненность, возрастающую ре сур со емкость действующих и в еще большей степени разрабатываемых вакуумных систем. Таким образом, процесс проектирования современных вакуумных систем является сложной и разветвленной задачей, подверженной влиянию многих факторов, характеризующих специфичность и многообразие параметров функционирования вакуумной системы. Поэтому решение подобной задачи требует зачастую индивидуального подхода, так как современные реальные вакуумные системы являются сложными ресурсоемкими комплексами как с технологической, так и с экономической точки зрения и проведение исчерпывающих экспериментальных исследований на этапе проектирования затруднено или невозможно. [c.7]

    Кроме того, часто основным признаком принадлежности вакуумной системы к тому или иному классу является применяемое в ней оборудование откачки. Так, например, если в вакуумной системе используются насосы без масляной смазки, то такую систему обычно называют безмасляной. Кроме типа устройств откачки для характеристики вакуумной системы важную роль играет их производительность степень достигаемого вакуума, быстрота откачки и продолжительность поддержания рабочих режимов. В этой связи вакуумные системы разделяют на большие и малые. Большие вакуумные системы находят применение в установках термоядерной энергетики, системах имитации космического пространства. Малые вакуумные системы обычно используются в микроэлектронике, химии, медицине и других областях, где не требуется столь внушительная, как в больших системах, производительность. [c.98]

    К электрофизическим установкам относятся электронные и ионные ускорители, ускорительно-накопительные комплексы, столк-новители, термоядерные реакторы и другие системы, предназначенные для фундаментальных и прикладных исследований строения материи, физико-технических основ энергетики, физики плазмы и пр. Так, например, ускорители используются для исследования свойств элементарных частиц в лучевой терапии, дефектоскопии, термоядерные реакторы - для исследований возможности получения управляемой термоядерной реакции. При создании электрофизических установок определяющим фактором являются вакуумные условия [1]. Так, фоновое давление в термоядерных реакторах с магнитным удержанием плазмы не должно превышать Па при объеме камер 300-800 м и пло- [c.54]


    Получение сверхвысокого вакуума. В настоящее время, важной проблемой является получение сверхвысокого вакуума (см. табл. 1). Предел достигаемого давления определяется скоростью миграции молекул газа а стенках вакуумной системы [345]. При сверхвысоком вакууме возрастает температурная десорбция газов и паров с поверхности, в результате чего возникает поверхностная миграция с определенным коэффициентом диффузии и соответствующая этому движенивэ спонтанная десорбция [116]. Сверхвысокий вакуум уже находит применение в крупных установках, таких как термоядерные установки и ускорители, он необходим для получения тонких пленок, применяемых для исследований в ядерной физике, физике твердого состояния и полупроводников. При получении сверхвысокого вакуума необходимо, чтобы не было загрязнений системы углеродосодержащими продуктами, которые могут попадать в систему в виде паров масла из масляных насосов. Чтобы обеспечить такое требование, либо применяются различные ловушки, либо масляные насосы заменяются ртутными, пр1ичем это относится как к высоковакуумным насо сам, так и к насосам, создающим предварительное разрежение. [c.489]

    Классифицировать вакуумные системы удобно в зависимости от параметров, которые необходимо обеспечить в процессе работы. Например, в зависимости от степени достигаемого вакуума выделяют системы, обеспечивающие сверхвысокий, высокий, средний и низкий вакуум форвакуумные системы). Если необходимо обеспечивать работу при низких температурах, используют криовакуумные системы. Различное криовакуумное оборудование получило широкое распространение в термоядерной энергетике, микроэлектронике, ускорительно-накопительных установках и в ряде других областей. Зачастую эти системы используют в приложениях с высокой степенью ответственности , поскольку они позволяют избавиться от движущихся (а значит, наиболее уязвимых) узлов в рабочей зоне. [c.98]

    Необходимость проведения предварительных исследований современных криовакуумных систем на этапе проектирования диктуется пре5вде всего их сложностью и необходимостью обеспечения бесперебойности функционирования. При этом большая технологическая и экономическая ресурсоемкость подобных систем существенно затрудняют проведение исчерпьшающих экспериментальных исследований. В силу этих факторов важное значение приобретают предварительные аналитические исследования ответственных и ресурсоемких криовакуумных систем. Особую актуальность это приобретает по отнощению к вакуумному оборудованию, используемому в таких системах как экспериментальные установки термоядерного синтеза, системы микроэлектроники, установки физики твердого тела, систем моделирования условий космоса, ускорительно-накопительные комплексы и т. п. [c.4]


Смотреть главы в:

Учебная лаборатория вакуумной техники -> Вакуумные системы термоядерных установок

Вакуумная техника и технология -> Вакуумные системы термоядерных установок




ПОИСК





Смотрите так же термины и статьи:

Вакуумная установка

Вакуумные системы установок

Установки вакуумные установки



© 2025 chem21.info Реклама на сайте