Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Элементарные частицы свойства

Таблица 1. Свойства элементарных частиц, составляющих атом Таблица 1. Свойства элементарных частиц, составляющих атом

    В таблице 3 приведены свойства элементарных частиц, образующих атомы. [c.23]

    Атомы. Последним известным в настоящее время пределом делимости вещества являются элементарные частицы — протоны, нейтроны и др. За последние десятилетия благодаря появлению мощных ускорителей и тщательному исследованию состава космических лучей стало известно около 200 видов элементарных частиц и рассматривается вопрос об их строении, в связи с чем вместо термина элементарные частицы иногда пользуются выражением фундаментальные частицы . Атомами называют наиболее простые электрически нейтральные системы, состоящие из элементарных частиц. Более сложные системы — молекулы — состоят из нескольких атомов. Химикам приходится иметь дело с атомами, образующими вещества, — атомами химических элементов они представляют наименьшие частицы химических элементов, являющиеся носителями их химических свойств. [c.5]

    Примечательно, что некоторые из элементарных частиц первоначально были обнаружены в космических лучах. Приходя к нам из самых далеких пределов Вселенной, они генерируются, как полагают, в процессах, происходящих в звездах. Космические лучи, таким образом, явились как бы связующим звеном между двумя крайними полюсами материального мира. В самой структуре материи раскрылось единство, позволяющее через малое познавать большое, через изучение элементарных частиц, свойства которых в конечном счете обусловливают все разнообразие явлений материального мира, подойти к объяснению явлений космоса, светимости, энергии и строения звезд, их химического состава и эволюции. [c.23]

    Необходимо отметить, что схема, согласно которой атом образуется из элементарных частиц только трех типов, является упрощенной. Однако при рассмотрении структуры химической организации материи такое упрощение вполне оправданно — свойства атома и характер его взаимодействия с другими атомами можно однозначно объяснить только тремя параметрами числом протонов, нейтронов и электронов, содержащихся в нем. [c.6]

    В теории и методах современной химии знание свойств элементарных частиц имеет большое значение. Ниже приведен краткий обзор известных в настоящее время элементарных частиц. [c.31]

    Первый том нового (шестого) издания справочника состоит из пяти книг, посвященных атомной и молекулярной физике. Первая книга — правила пользования справочником, метрическая система, основные физические и химические константы, атомы и ионы (спектры, радиусы, магнитные моменты, поляризуемость, эффект Фарадея). Вторая и третья книги — свойства молекул, молекулярных ионов и радикалов межатомные расстояния, энергии химических связей, колебания и вращение молекул, барьеры внутреннего вращения, ИК-, КР- и микроволновые спектры, спектры поглощения, энергии ионизации, оптическое вращение, поляризуемость, магнитные моменты, квантовые выходы фотохимических реакций. Четвертая книга — кристаллы (строение, типы решеток, рентгеновские спектры, радиусы атомов и ионов) пятая — атомное ядро и элементарные частицы (свойства ядер, естественная радиоактивность, ядерные реакции, космические лучи). [c.44]


    Одним из важнейших свойств вещества (материи), ставшим очевидным со времен Дальтона, является то, что оно построено из отдельных, дискретных частиц. Большинство веществ природы внешне представляются непрерывными, например вода, ртуть, кристаллы солей, газы. Однако если бы наш глаз мог различать ядра и электроны, входящие в состав атомов, а также элементарные частицы, из которых состоят ядра, сразу обнаружилось бы, что любое вещество в окружающем нас мире состоит иэ определенного числа таких основных структурных единиц и, следовательно, имеет квантованную природу. Материальные предметы кажутся непрерывными только из-за крохотных размеров составляющих их индивидуальных частиц. [c.353]

    В гл. 1 уже упоминалось, что атомное ядро состоит из двух типов основных элементарных частиц, протонов и нейтронов, которые в совокупности называются нуклонами. Ядро имеет положительный заряд, равный числу содержащихся в нем протонов, а это число 2 называется порядковым (атомным) номером ядра. В нейтральном атоме ядро окружено электронами, число которых равно числу протонов в ядре. Поскольку химические свойства атома определяются его электронами, все нейтральные атомы с одинаковым числом электронов (и протонов) рассматриваются как атомы одного элемента. Следовательно, порядковый номер атома указывает на его принадлежность к определенному элементу. Суммарное число протонов и нейтронов в атомном ядре называется его массовым числом, А. [c.405]

    Позднейшее развитие учения об атоме блестяще подтвердило вывод Ленина о неисчерпаемости атома и электрона открытия последних лет показали изменчивость элементарных частиц и их взаимную превращаемость. Относительный характер наших современных знаний о строении материи и ее свойствах не [c.21]

    Электроны в связанной форме являются частицами, поведение которых в значительной мере определяет химические свойства вещества. Говорят даже, что химия —это физика электронных оболочек . При исследовании именно этих элементарных частиц был установлен так называемый корпускулярно-волновой дуализм материи. Рассмотрим сначала некоторые свойства электронов, в которых проявляется их корпускулярная природа. Прежде всего отметим, что можно определить заряд и массу электрона интересны в этом отношении и методы получения электронов. К последним относятся термоэмиссия (при высокой температуре электроны сравнительно легко покидают решетку некоторых металлов, в особенности щелочных) и ударная ионизация. [c.26]

    В физической химии применяется несколько теоретических методов. Квантово-механический метод использует представления о дискретности знергии и других величин, относящихся к элементарным частицам. С его помощью определяют свойства молекул и природу химической связи на основе свойств частиц, входящих в состав молекул. Термодинамический (феноменологический) метод базируется на нескольких законах, являющихся обобщением опытных данных. Он позволяет на их основе выяснить свойства системы, не используя сведения о строении молекул или механизме процессов. Статистический метод объясняет свойства веществ на основе свойств составляющих эти вещества молекул. Физико-химический анализ состоит в исследовании экспериментальных зависимостей свойств систем от их состава и внешних условий. Кинетический метод позволяет установить механизм и создать теорию химических процессов путем изучения зависимости скорости их протекания от различных факторов. [c.5]

    Таким образом, длина волны де Бройля в области напряжений 102—1о 1 в имеет порядок —0,1 нм, т.е. близкий длине волны рентгеновского излучения. Волновые свойства других элементарных частиц также получили экспериментальное подтверждение. [c.28]

    Выше рассмотрены свойства таких важных элементарных частиц, как электроны. Остановимся вкратце на характеристиках некоторых других элементарных частиц, особенно тех, представление о которых необходимо для понимания строения атомного ядра. Попутно коснемся и некоторых закономерностей в строении атомного ядра, имеющих большое значение в химии. Помещаемый здесь материал можно рассматривать лишь как краткий очерк по ядерной физике и ядерной химии. С основной аппаратурой, устройствами, методами анализа, применяемыми в ядерной физике и химии, можно ознакомиться по специальной литературе (ускорители, реакторы, масс-спектрографы, камеры Вильсона и пузырьковые камеры и т. д.). [c.31]

    Атомы бывают различные. Атомы каждого вида одинаковы между собой, но они отличаются от атомов любого другого вида. Так, атомы углерода, азота и кислорода имеют различные размеры, отличаются по физическим и химическим свойствам. Атомы состоят из элементарных частиц для последних приняты условные обозначения (табл. 1.1). [c.18]


    Спин наряду с массой и зарядом служит основной характеристикой элементарных частиц. Спин нейтронов и протонов и возникающий в результате их суммирования спин атомных ядер не оказывает большого влияния на свойства атомов и молекул, однако спин электрона имеет важное значение в химии. [c.19]

    Свойства элементарных частиц, составляющих атом- [c.20]

    В зависимости от физической природы некоторые частицы (электроны, нейтроны, ядра и др.) обладают внутренним моментом импульса, называемым спином, как будто они вращаются вокруг своей оси, хотя с точки зрения физики рассматривать какие-либо собственные вращения элементарных частиц и ядер бессмысленно. Это внутреннее свойство частиц не может быть описа- [c.12]

    Атом (в переводе с греческого означает неделимый) — система элементарных частиц, состоящая из- ядра, образованного протонами и нейтронами, и электронов. Совокупность атомов, обладающая одинаковым зарядом ядра, образует химические элементы. Таким образом, атом — наименьшая частица химического элемента, носитель его свойств он обозначается символом элемента. [c.5]

    Макроскопическими телами называютсй йСе Те Тела, с которыми непосредственно сталкивается человек в своей повседневной практике и к которым прпнадлел ит он сам, все те тела и предметы, которые он воспринимает своими органами чувств, расширив диапазоны их восприятия в широчайших пределах с помощью таких приборов, как микроскопы и телескопы. До XX в. только эти тела были предметом изучения физики, и.лишь в XX в. человек познал истинный характер их внутренней природы. Да и сам термин макроскопические тела стал употребляться лишь в XX в., когда был открыт и изучен новый, до того неизвестный мир атомов, молекул и элементарных частиц, свойства и законы которых оказались существенно отличными от свойств и законов ранее изучавшихся тел. Потребовалось создать новую физику, физику микромира, построенную на иринципи ально новых основаниях и представлениях, которую, чтобы отличить от физики микромира, стали называть классической, а чтобы подчеркнуть качественное отличие объектов классической физики от объектов новой физики, первые стали называть макроскопическими телами или макротелами, а вторые — микроскопическими телами или микротелами. [c.8]

    Рассмотренные выше теоретические представления и экспериментальные данные убедительно свидетельствуют о том, что с помощью классической физики нельзя полностью интерпретировать свойства элементарных частиц. Раздельное рассмотрение волны и частицы не позволяет проникнуть в сущность микромира. Электрон, например, — это и не частица и не волна, тем не менее это вполне реальный объект, во многом определяющий свойства химических веществ. Заслугой Гейзенберга, Борна, Шрёдингера и Дирака является то, что они заложили основы такой механики , которая правильно описывает свойства электронов и позволяет более глубоко понять сущность материи. Чтобы более ясно представить себе основы квантовой механики, необходимо отойти от привычных понятий, которые от долгого употребления стали слишком наглядными . Физика [c.28]

    В ядерных реакциях и реакциях между элементарными частицами происходит точное или почти точное сохранение даже таких мало известных свойств, как четность, странность и шарм (привлекательность). Эти свойства представляются довольно таинственными, поскольку мы ничего не слыхали о них раньще, прежде чем узнали о необходимости их сохранения. Масса и энергия были известны задолго до того, как были обнаружены законы их сохранения. Но кто когда-нибудь слыхал о щарме элементарных частиц, прежде чем был провозглащен закон его сохранения Во- [c.97]

    Квантовая механика не дает в настоящее время возможности объяснить указанную двойственность в характере рассматриваемых явлений, так как остается еще не раскрытой природа элементарных частиц и сущность их свойств — заряда, спина и др. Поэтому методы квантовой механики носят в значительной степени формальный характер. Однако выводы, получаемые таким путем, дают возможность разрешать многие задачи, неразрешимые в настоящее время другими методами. При помощи квантовой механики можно характеризовать состояние электрона в атоме и определять плотность электронного облака в различных точках атома. В настоящее время успешное приложение квантово-механических методов к решеиию ряда важных проблем химии привело к возникновению нового раздела химии — квантовой химии.  [c.44]

    Из приведенных данных видно, что по величине энергии ионизации водород стоит шачительно ближе к фтору, чем к литию, и никакие металлические свойства свободному атому водорода, следовательно, не присущи. Точно так же положительно заряженный ион водорода не имеет ничего общего со свойствами ионов щелочных металлов, поскольку является элементарной частицей — протоном. Вместе с тем в электрохимическом ряду напряжений водород ведет себя как металл. Это объясняется тем, что электрохимический ряд напряжений служит характеристикой атомов металлов в водных растворах (см. гл. V, 11). При ионизации атома водорода в присутствии воды образуется ион гидроксония Н3О+, что сопровождается выделением энергии. Вследствие этого энергия ионизации атома водорода в водном растворе резко снижается и становится близкой к величине энергии ионизации атомов металлов. Заметим, что по некоторым физическим свойствам ион Н3О+ в растворе ведет себя подобно катионам щелочных металлов. Однако эти особенности не относятся к атому или иону водорода и не дают оснований рассматривать его как металл. Сходство строения внешней электронной оболочки атома водорода с внешними электронными оболочками атомов щелочных металлов носит, следовательно, такой же формальный характер, как и однотипность строения внешних электронных оболочек атома гелия и атомов элементов II группы. [c.160]

    Проникновение в строение атомов и молекул и глубокое изучение их свойств дало сильнейшее оружие в борьбе за материалистическое мировоззрение, которая особенно остро происходила в начале XX в. Развитие физики и химии показало глубокую правоту положений В. И. Ленина, выдвинутых в его книге Материализм и эмпиргюкритицизм (1902), так как методами этих наук было доказано реальное существование атомов и элементарных частиц как составных частей материального мира, а в последние годы показана изменчивость и взаимопревращаемость элементарных част Щ. [c.8]

    Выше уже говорилось, что дискретная структура материи, понятие об атоме и молекуле лежат в основе научных представлений современной химии. Важнейшее свойство материи — движение — рассматривается кинетической теорией, развитой во второй половине XIX в. Клаузиусом, Максвеллом и Больцманом , главным образом кинетической теорией газов. Было постулировано, что элементарные частицы материи — атомы и молекулы — находятся в постоянном движении. Рассмотрим сначала посгупательное движение молекул в идеальном газе, подчиняющееся законам классической механики. [c.18]

    Знание i 3-(j)yHKnHH само по себе недостаточно для описания состояния элементарной частицы. Последняя характеризуется еще одним параметром, не имеющим аналогии в классической ф изике, —так называемым спиновым вращательным моментом, который определяет особые свойства элементарной частицы, открытые Гаудсмитом и Уленбеком (1925 г.) и подробнее рассмотренные в гл. 5. Эти ученые установили, что спиновая функция а, соответствующая волновой функции а з, может быть записана в - и р-формах. Для а проекция механического момента вращения частицы на ось вращения равна а для Р она равна —Vs . Функция состояния системы определяется как Ч =а1)а. [Функции пёремножаются при условии независимости поступательного движения частицы и спина (отсутствует спинорбитальное взаимодействие ).] (Подробнее об умножении вероятностных функций см. также разд. 6.2.1.) [c.30]

    Электронопроводящая фаза (металл, уголь, графит и пр.), вместе с раствором или расплавом электролита образует полуэлемент. Из двух полуэлементов получают электрохимическую цепь (гальванический элемент). Как видно, в электрохимических цепях имеются твердые фазы (левый и правый электроды) и жидкие фазы (растворы, примыкающие к электродам). Могут быть также и газовые фазы, граничащие с раствором н электродами (по свойствам близкие к вакууму). Разность потенциалов между двумя точками определяется работой, которую необходимо совершить, чтобы перенести элементарную частицу электричества из одной точки в другую. Если обе точки находятся в одной и той же фазе, то работа переноса заряда будет электрической и разность потенциалов между выбранными точками можно измерить или вычислить. Если точки лежат в двух разных фазах, то перенос элементарной частицы электричества будет связан не только с электрической работой, но и с химической, поскольку химические потенциалы этой частицы в разных фазах неодинаковы. Поэтому энергетическое состояние заряженной частицы характеризуется суммой химического потенциала и ее электрической энергии в данной фазе  [c.161]

    Зарядовая независимость, изотопический спин, гиперонный заряд, странность — свойства элементарных частиц, ставшие известными в последнее время, — связаны с взаимодействием между частицами (рассмотрение этих вопросов выходит за рамки этой книги). [c.32]

    Атом — Система взаимодействующих элементарных частиц, состоящая из ядра и электронов. Тип атома определяется составом его ядра. Ядро состоит из протонов и нейтронов, вместе называемых нуклонами. Элемент — совокупность атомов с одинаковъш зарядом ядра, т. е. числом протонов. Атомы элемента могут иметь различные числа нейтронов в составе ядра, а следовательно, и массу. Такие атомы, относящиеся к одному элементу, называются изотопами. Каждый известный элемент имеет свое обозначение. Так водород обозначается как Н, углерод — С, кислород — О, кремний — 81, железо — Ре. Атом — наименьшая частица элемента, обладающая его химическими свойствами. [c.18]

    КВАНТОВАЯ МЕХАНИКА - физическая теория, изучающая общие закономерности движения и взаимодействия микрочастиц (элементарных частиц, атомных ядер, атомов и молекул) теоретическая основа современной физики и химии. К. м. возникла в связи с необходимостью преодолеть противоречивость и недостаточность теории Бора относительно строения атома. Важнейшую роль в разработке К. м. сыграли исследования М. Планка, А. Эйнштейна, Н. Бора, М. Борна и др. К. м. была создана в 1924—26 гг., благодаря трудам Л. де Бройля, Э. Шредингера, В. Гейзенберга и П. Дирака. К. м. является основой теории многих атомных к молекулярных процессоБ. Она имеет огромное значение для раскрытия строения материи и объяснения ее свойств. На основе К. м были объяснены строение и свойства ато MOB, атомные спектры, рассеяние света создана теория строения молекул и рас крыта природа химической связи, раз работаиа теория молекулярных спектров, теория твердого тела, объясняющая его электрические, магнитные и оптические свойства с помощью К. м. удалось понять природу металлического состояния, полупроводников, ферромагнетизма и множества других явлений, связанных с природой движения и взаимодействием микрочастиц материи, не объясняемых классической механикой, [c.124]

    ЭЛЕКТРОН (е) — устойчивая элементарная частица с отрицательным электрическим зарядом, принятым за единицу количества электричества, и массой, равной 9 г. Э. был открыт в 1897 г. Дж. Томсоном. Э. играют основную роль в строении вещества, они являются одной из составных частей атомов. Э,, движущиеся вокруг атомного ядра, определяют химические, электрические, оптические и другие свойства атомов и л олекул. Характер движения Э. обусловливает свойства жидких и твердых тел, их плотность, электропроводность метяллов и полупроводников, свойства диэлектриков, оптические и другие свойства кристаллов и т. д. Важную роль играют ва- [c.290]

    Сущность химического взаимодействия между атомами, согласно квантовой теории, сводится к взаимодействию между валентными электронами (которые, переходя с атомных орбит на общемолекулярные, создают единый электронный заряд) и положительно заряженными ядрами. Так как всякие элементарные частицы проявляют корпускулярные и волновые свойства, то в молекуле (а равно в комплексе, монокристалле) валентные электроны находятся не в определенных дискретных точках пространства, а образуют сплошность —непрерывное волновое поле с большей или меньшей электронной плотностью в различных его частях в зависимости от положительных зарядов и структуры ядер. Как раз перераспределение электронной плотности в результате взаимного влияния ядер и обеспечивает тот в высшей степени важный эффект энергетической неравноценности связей, который был зафиксирован еще бутлеровской теорией химического строения. [c.92]


Смотреть страницы где упоминается термин Элементарные частицы свойства: [c.44]    [c.49]    [c.62]    [c.98]    [c.269]    [c.27]    [c.126]    [c.26]    [c.24]    [c.296]   
Химия справочное руководство (1975) -- [ c.392 , c.393 ]




ПОИСК





Смотрите так же термины и статьи:

Свойства частиц

Элементарные частицы



© 2025 chem21.info Реклама на сайте