Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структурно-химическая организация живой клетки

    В отличие от неживых объектов, в живых организмах благодаря особым системам регуляции поддерживаются практически постоянные значения температуры и давления, вследствие чего они не способны использовать тепловую энергию для совершения работы. Клетка является изотермической химической машиной, эффективность которой значительно выше, чем эффективность большинства преобразователей энергии, созданных человеком. Высокая эффективность преобразования энергии живыми организмами поддерживает их структурную организацию и обеспечивает жизненные функции. [c.30]


    Все биосистемы объединяет важный признак, вытекающий из особенностей их химического состава, — высокий уровень структурно-химичес-кой организации, которая рассмотрена ниже на примере структурно-химической организации живой клетки. [c.25]

    Чтобы понять всю сложность исследований, проводимых учеными-биохимиками при изучении структурно-функциональной организации живых объектов, в качестве иллюстрации приведем лищь один пример, поясняющий строение и основы жизнедеятельности простейшей бактериальной клетки Es heri hia соН (в дальнейшем сокращенно — Е. соН). Клетка Е. соИ (рис. В.З) имеет весьма скромные размеры длина — 3, а диаметр — 1 мкм, ее масса приблизительно 6 10 г, две трети которой составляет вода. Остальное вещество клетки образовано белками, свободными аминокислотами, нуклеиновыми кислотами, жирами и углеводами. Клетка состоит из 40 млн больших и средних молекул, участвующих вместе с малыми молекулами в 2—5 тыс. типов химических процессов, многие из которых протекают в 20 — 30 стадий. В клетке содержится около 10 тыс. рибосом, на которых непрерывно синтезируется несколько тысяч типов белков, причем каждая рибосома собирает в среднем одну молекулу белка за 1 с. Сборка представляет собой многостадийную операцию, во время которой несколько сотен аминокислот сшиваются в определенном порядке за счет образования пептидных связей, и включает стадии подбора аминокислот, расстановки их по местам, удаления молекулы воды в процессе образования пептидных связей. Поэтому одновременно в клетке содержится около миллиарда аминокислот, из которых только 1 % входит в состав белков, а остальные находятся в работе. Основная информация о химической организации клетки записана в ДНК буквами такой записи являются триплеты азотистых оснований. В рассматриваемой нами клетке молекулы ДНК содержат 2—5 млн триплетов, т. е. до 15 млн оснаваний, расположенных в строго определенном порядке (для сравнения одна молекула ДНК клетки человека содержит приблизительно 3 млрд оснований). [c.28]

    В.5. СТРУКТУРНО-ХИМИЧЕСКАЯ ОРГАНИЗАЦИЯ ЖИВОЙ КЛЕТКИ [c.25]

    Рис. в.1. Структурно-химическая организация живой клетки. Числа — масса в Дальтонах [c.26]

    Специфичность ферментов. Ферменты обладают высокой специфичностью действия. Это свойство часто существенно отличает их от неорганических катализаторов. Так, мелкоизмельченные платина и палладий могут катализировать восстановление (с участием молекулярного водорода) десятков тысяч химических соединений различной структуры. Высокая специфичность ферментов обусловлена, как было отмечено, конфор-мационной и электростатической комплементарностью между молекулами субстрата и фермента и уникальной структурной организацией активного центра, обеспечивающими узнавание , высокое сродство и избирательность протекания одной какой-либо реакции из тысячи других химических реакций, осуществляющихся одновременно в живых клетках. [c.142]


    Многоклеточное растение возникает из одной оплодотворенной яйцеклетки. Следовательно, клетка — особая единица, обладающая всеми свойствами живого и передающая их из поколения в поколение. Условно называя клетку единицей, не следует забывать, что она характеризуется весьма сложной химической и структурной организацией. Между растительными и животными организмами существует глубокое принципиальное различие, связанное с особенностями их клеточной структуры. Так, зеленые растения благодаря хлоропластам могут поглощать солнечную энергию, превращать ее в химическую и запасать в виде углеводов и в макроэргических связях молекул аденозинтрифосфорной кислоты (АТФ), к чему не приспособлены клетки животных. [c.11]

    Присутствие классических нейромедиаторов синаптической передачи возбуждения - ацетилхолина, катехоламинов, серотонина и гистамина в растениях, их заметная физиологическая активность, наличие компонентов холинэргической, адренэргической систем регуляции, их аналогия с животными клетками делает вполне реальной идею об универсальных принципах сигнализации и передачи информации в виде электрического и химического сигналов у всех живых организмов. Различия, в основном, касаются частных механизмов межклеточной сигнализации у многоклеточных животных и растений, обусловленные специаш1зацией, структурной организацией, особенностями энергетических и метаболических обменов. [c.125]


Смотреть страницы где упоминается термин Структурно-химическая организация живой клетки: [c.26]    [c.457]   
Смотреть главы в:

Химические основы жизни -> Структурно-химическая организация живой клетки




ПОИСК





Смотрите так же термины и статьи:

РНК структурная организация



© 2025 chem21.info Реклама на сайте