Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аденозинтрифосфорная кислота АТФ

    Аденозинтрифосфорная кислота (АТФ) является универсальным аккумулятором энергии, освобождающейся в процессе дыхания, и источником энергии для осуществления всех основных жизненных функций организма. [c.8]

    Способы получения энергии в принципе также сходны у животных, растений и микроорганизмов. Особенностью биологического окисления является то, что часть освободившейся энергии аккумулируется в макроэргических связях аденозинтрифосфорной кислоты (АТФ). Другая часть рассеивается в виде тепловой энергии. Клетки животных, растений и микроорганизмов используют энергию макроэргических связей (АТФ) для покрытия всех своих энергетических нужд. [c.256]


    Сложные эфиры фосфорной кислоты. К этой группе соединений относится большое количество разнообразных веществ, играющих важную биологическую роль фосфатиды, предварительное знакомство с которыми мы осуществили в главе о жироподобных веществах, нуклеиновые кислоты, аденозинтрифосфорная кислота (АТФ), многие ферменты, креатинфосфат й другие соединения, которые явятся предметом изучения в курсе биологической химии. [c.292]

    Совершенно особую роль в процессах метаболизма, и именно в его энергетике, играют трифосфаты, построенные по тому же типу, что и мононуклеотиды, но содержащие не одну, а три фосфатные группы. Отщепление одной или двух из них вследствие гидролиза освобождает энергию, которую клеточные аппараты используют для разнообразных целей химических синтезов, поддержания температуры, люминесценции, механической (мышечной, например) работы и др. Образующиеся в результате гидролиза ди- или монофосфаты вновь фосфорилируются, давая трифосфат. Наиболее изученным представителем таких веществ является аденозинтрифосфорная кислота (АТФ)  [c.183]

    Биологический синтез белка представляет собой сложный, многофазный или многоступенчатый процесс. Помимо РНК в синтезе белков принимают участие многочисленные ферменты. На первой ступени активируются аминокислоты, соединяющиеся потом в пептидные цепочки. Вторая ступень — транспорт активированных аминокислот к рибосомам. Третья ступень представляет собой упорядочение и сочетание инициированных аминокислот и расположение их в необходимой последовательности на матричной РНК с последующим замыканием пептидных связей. Четвертая ступень — формирование из линейной молекулы объемной структуры, свойственной данному белку. Повышение реакционной способности, активация аминокислот увеличивает возможности взаимодействия их друг с другом осуществляется этот процесс при взаимодействии аминокислот с аденозинтрифосфорной кислотой (АТФ). При этом происходит передача энергии одной макроэргической связи АТФ на аминокислоту, переходящую на более высокий энергетический уровень. Реакция активации аминокислот протекает с участием фермента аминоацил-РНК-синтетазы. Для активации различных аминокислот необходимы разные ферменты — синтетазы. Аминокислотная последовательность при синтезе осуществляется кодонами (фрагментами цепи ДНК). [c.105]


    При разрыве макроэргических связей вследствие гидролиза освобождаются значительные количества энергии от 6 до 12 ккал моль так, например, в одном из наиболее биологически важном соединении, принимающем участие во всех обменах веществ, аденозинтрифосфорной кислоте (АТФ) [c.116]

    Сопряженные реакции имеют огромное значение в биологии. Биосинтез белков и нуклеиновых кислот в клетке идет с увеличением изобарного потенциала потому, что сопряженно с синтезом происходит гидролиз одной из пирофосфатных связей молекулы аденозинтрифосфорной кислоты (АТФ), который сопровождается, наоборот, уменьшением изобарного потенциала. В свою очередь образование АТФ приводит к росту АО и идет как сопряженная реакция с процессами окисления. [c.50]

    Это свойство сопряженных реакций играет исключительно важную роль в живой природе. Например, синтез важнейщих компонентов живой материи — белков и нуклеиновых кислот соответственно из аминокислот и нуклеотидов сопровождается существенным увеличением энергии Гиббса. Эти процессы становятся возможными потому, что протекают сопряженно с гидролизом аденозинтрифосфорной кислоты (АТФ), который сопровождается существенным уменьшением энергии Гиббса, перекрывающим ее рост при синтезе указанных полимеров. Наоборот, образование АТФ из продуктов ее гидролиза, сопровождающееся увеличением энергии Гиббса, происходит сопряженно с окислением органических соединений (идущим с существенным уменьшением энергии Гиббса). [c.391]

    Например, молекула аденозинтрифосфорной кислоты (АТФ) содержит остатки аденина, рибозы и фосфорной кислоты, т. е. по своему составу также является нуклеотидом. Существенное отличие АТФ от нуклеотида нуклеиновых кислот состоит в том, что вместо одного остатка фосфорной кислоты в АТФ содержится три таких остатка. [c.664]

    О-глюкоза — ОСНОВНОЙ источник энергии живых организмов. При гликолизе 1 г/моля глюкозы выделяется 196,3 кДж. Ферментативное расщепление глюкозы в живой клетке протекает до образования молочной кислоты, сопряженной с образованием аденозинтрифосфорной кислоты (АТФ). [c.102]

    Источником фосфорной кислоты является аденозинтрифосфорная кислота (АТФ), которая входит в состав козимазы. Она имеет следующий вид  [c.548]

    Сокращение мышцы происходит вследствие взаимного скольжения двух сеток волокон (рис. 3—6). Это передвижение сопряжено с гидролизом богатых энергией молекул аденозинтрифосфорной кислоты (АТФ), происходящим на уровне поперечных мостиков (рис. 2, в). Ресинтез молекул АТФ идет за счет энергии окисления определенных сахаров. Во время этого процесса поперечные мостики попеременно разрушаются и восстанавливаются, причем механизм этого явления понят не до конца. [c.287]

    Перенос фосфатных остатков от аденозинтрифосфорной кислоты (АТФ) к разнообразнейшим субстратам, с сохранением анергии во вновь образовавшейся фосфатной связи [c.806]

    Сохранность клеточной структуры ткани печени имеет значение только в качестве условия, обеспечивающего доставку энергии. Поэтому в гомогенатах печени, где целостность клеточной структуры нарушена, а также в вытяжках из печени, где клеток вообще нет, указанный механизм синтеза мочевины действует только в том случае, если добавлены аденозинтрифосфорная кислота (АТФ) и Mg. [c.341]

    Аденозинтрифосфорная кислота (АТФ, аденозин-5 -трифосфорная кислота) [c.58]

    В первичной реакции (1) А называется актором, Вх — индуктором, X — активным промежуточным продуктом. В реакции (2) В2 — акцептор, С — конечный устойчивый продукт. Сущность явления химической индукции заключается в том, что образование высокореакционноспособных промежуточных продуктов в первичных реакциях сопровождается значительным уменьшением энергии Гельмгольца (АЛ > 0), обеспечивает возможность протекания других (индуцированных) реакций, в том числе даже сопровождающихся увеличением А (А А > 0), протекание которых становится возможным благодаря участию активных промелсуточных продуктов. Сопряженные реакции играют чрезвычайно важную роль в биологии, так как образование белков и нуклеиновых кислот, протекающее с увеличением энергии Гельмгольца, идет сопряженно с реакцией гидролиза аденозинтрифосфорной кислоты (АТФ), сопровождающейся уменьшением А (АА < 0) и являющейся источником энергии для многообразных химических процессов в клетках. Особо вяжную роль здесь играют ферменты, способствующие полноте использования в индуцируемой реакции свободной энергии индуцирующей. [c.250]

    Аденозинтрифосфорная кислота (АТФ) — основное соединение, в котором запасается и переносится энергия, необходимая для выполнения работы живыми организмами. В АТФ имеются чрезвычайно богатые энергией фосфатные свяяи, благодаря которым АТФ и является участником реакций обмена веществ (знаком — обозначены фосфатные связи, особенно богатые энергией)  [c.6]

    Лигазы (синтетазы) катализируют синтез сложных органических соединений из более простых. Глутаминсинтетаза, например, синтезирует глутамин из глутаминовой кислоты и аммиака с обязательным участием аденозинтрифосфорной кислоты (АТФ), дающей энергию для реакции. [c.84]


    Важнейшие биохимические реакции связаны с превращениями энергии в живой клетке. Энергия накапливается и передается в молекулах аденозинтрифосфорной кислоты (АТФ) — нуклеотида, состоящего из азотистого (пуринового) основания аденина, сахара (рибозы) и трех остатков фосфорной кислоты, которые связаны между собой богатыми свободной энергией (макроэргическими) химическими связями. Исходным источником энерги1Г является солнечный свет, энергия которого в зеленых листьях растений при участии красящего вещества—хлорофилла расходуется на синтез АТФ (фотосинтетическое фосфорилирование). В дал1.нейшем АТФ расходует накопленную энергию в последующих стадиях фотосинтеза, приводящих к образованию из двуокиси углерода и воды крахмала — полимерного сахаристого вещества в котором на длительное время запасается [c.491]

    Аденозинтрифосфорная кислота (АТФ) представляет собой нуклеотид, построенный из аденина, рибозы и трех остатков фосфорной кислоты, и содержится в мышцах в количестве 0,25—0,4%. Взаимодействие ее с мышечным белком миозином, обладающим аденозинтрифосфатазной активностью, сопровождается превращением химиче- [c.251]

    Нуклеопротеиды, подобно белкам, подвергаются в желудочно-кишечном тракте расщеплению. В желудке под влиянием соляной кислоты и пепсина, а в кишечнике под влиянием трипсина нуклеопротеиды распадаются на белок и нуклеиновые кислоты. Далее белок под влиянием ферментов гидролизируется до аминокислот нуклеиновые кислоты подвергаются воздействию нуклеоти-даз или полинуклеотидаз и расщепляются до мононуклеотидов. Примером последних может служить аденозинмо-нофосфорная кислота (АМФ) и аденозинтрифосфорная кислота (АТФ)  [c.228]

    Можно считать установленным, что биологическая функция различных РНК в живой клетке непосредственно связана с синтезом белков. Процесс биосинтеза белков начинается с активирования свободных аминокислот, при помощи специальных ферментных систем, катализирующих образование активированной формы аминокислот, например аминоациладенилатов из аминокислот и аденозинтрифосфорной кислоты (АТФ). [c.653]

    Аденозинтрифосфорная кислота (АТФ) благодаря своим богатым энергией полифосфатным связям и широкому распространению в животных и растительных организмах является главным энергетическим веществом живых организмов. Энергия АТФ потребляется при боль -шом числе биохимических реакций. Исключительно важную роль АТФ играет в энергетике сокращения мышц. Аденнновые нуклеотиды участвуют в построении нуклеиновых кислот. [c.409]

    Кроме того, в организме встречаются и другие моно-и динуклеотиды, которые играют особую роль в процессах обмена веществ, будучи связаны с теми или иными катализаторами обмена— ферментами. Строение этих нуклеотидов отличается тем, что фосфорная кислота присоединена в них к пятому углеродному атому пентозы и, кроме того, в нуклеотиде нередко имеется не один, а несколько остатков фосфорной кислоты. Важнейшими представителями этой группы являются мышечная адениловая или аденозинмонофосфорная кислота (АМФ), аденози иди фосфор ная кислота (АДФ) и аденозинтрифосфорная кислота (АТФ). [c.58]

    Несмотря на значительное число макроэргических соединений в живых организмах, основная роль среди них принадлежит аденозинтрифосфорной кислоте (АТФ). Именно она является главным акцептором энергии, освобож-даюш ейся при расщеплении органических соединений в клетках, и основным переносчиком, поставщиком энергии, необходимой для осуществления синтетических процессов. Схема строения АТФ такова  [c.233]

    При действии раздражителя на нервное или мышечное волокно мембранный потенциал Е в месте раздражения нарушается. Нерв воспламеняется , и поляризация мембраны меняется на обратную (рис. 55, б). Поток ионов Ма+ устремляется внутрь клетки (заса сывается), а затем (рис. 55, в) ионы К+направляются во внешнюю среду. Возвращение к исходному положению (рис. 55, г) происходит спустя одну-две миллисекунды. Нервный импульс пиковый потенциал (потенциал действия) передается по нервному волокну дальше. Мембраны играют важную роль в процессах освобождения и запасания энергии в живых организмах. Ее накопление происходит в виде аденозинтрифосфорной кислоты (АТФ), а при необходимости энергия освобождается за счет разрыва одной из трех богатых энергией связей Р—О—Р. На мембране митохондрии — одного из компонентов клетки — происходит превращение энергии химических связей в мембранный потенциал. При этом важную роль играют проницаемость и электронная проводимость мембран. [c.159]


Смотреть страницы где упоминается термин Аденозинтрифосфорная кислота АТФ : [c.95]    [c.717]    [c.167]    [c.430]    [c.500]    [c.12]    [c.279]    [c.52]    [c.229]    [c.22]    [c.67]    [c.58]    [c.17]    [c.183]    [c.559]   
Смотреть главы в:

Теоретические основы биотехнологии -> Аденозинтрифосфорная кислота АТФ


Теоретические основы биотехнологии (2003) -- [ c.198 , c.200 , c.202 , c.203 , c.426 , c.430 ]

Биологическая химия Издание 3 (1960) -- [ c.0 ]

Биология с общей генетикой (2006) -- [ c.27 , c.59 , c.61 , c.71 , c.80 , c.81 ]




ПОИСК







© 2025 chem21.info Реклама на сайте