Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Клетка единица живого

    Полисахариды, наряду с белками и нуклеиновыми кислотами, являются необходимыми компонентами любой живой клетки. Если в области изучения биосинтеза и биологических функций нуклеиновых кислот и белка достигнуты в последнее время значительные успехи, молекулярная биология полисахаридов остается по существу белым пятном. Между тем многие проблемы иммунохимии, межклеточных взаимодействий, оплодотворения, клеточной дифференцировки, по-видимому, не могут быть удовлетворительно разрешены без понимания факторов, определяющих биологическую специфичность полисахаридов. Важным звеном, необходимым при обсуждении этих факторов, являются сведения о макромолекулярной структуре полисахаридов и других углеводсодержащих биополимеров. Между тем это направление исследований, к сожалению, развивается пока крайне слабо. Следует отметить, что изучение макромолекулярной структуры полисахаридов принципиально сложнее, чем в случае белков и нуклеиновых кислот. Это связано с огромным разнообразием возможных типов связей между мономерными единицами и существованием разветвлений, что ставит качественно новые задачи при определе- [c.635]


    Наш обзор, в котором клетки рассматриваются как единицы живой материи, не может быть полным, если мы не коснемся вирусов. Хотя вирусы и не являются живыми, они представляют собой образующиеся биологическим путем надмолекулярные комплексы, которые способны к самовоспроизведению в соответствующих клетках-хозяевах. Вирус состоит из молекулы нуклеиновой кислоты и окружающей ее защитной оболочки, или капсида, построенной из белковых молекул. Вирусы существуют в двух состояниях. Вне сформировавших их клеток вирусы представляют собой [c.48]

    Элементарной физической единицей живого является клетка это наименьшая жизнеспособная единица. По своему химическому составу все живые существа очень сходны. Основные компоненты всякой клетки-это дезоксирибонуклеиновая кислота (ДНК), рибонуклеиновые кислоты (РНК), белки, липиды и фосфолипиды. Изучение тонкого строения различных типов клеток позволило, однако, выявить заметные различия между бактериями и цианобактериями, с одной стороны, и животными и растениями (включая также их микроскопически малых представителей)-с другой. Различия между теми и другими настолько глубоки, что эти две группы организмов противопоставляются друг другу как прокариоты и эукариоты. Прокариот мы вправе рассматривать как реликтовые формы, сохранившиеся с самых ранних времен биологической эволюции, а появление эукариотических форм, возникших из прокариот,-как величайший скачок в истории жизни. [c.11]

    Клетка — мельчайшая структурная единица живой материи [c.11]

    Основой клеточной теории является утверждение о том, что все живые существа - животные, растения, простейшие организмы - состоят из клеток. Именно клетка является основной единицей живой материи. В клетках [c.113]

    Клетки-это структурные и функциональные единицы живых организмов. Простейшие организмы представляют собой единичные клетки в отличие от них организм человека содержит, по-ви димому, не менее 10 клеток. ствует множество самых разнообразных клеток, очень сильно различающихся по размерам, форме и функциональной спе- [c.25]

    Главы, посвященные изучению клетки, обычно начинаются так Типичная клетка состоит из. .. и затем следует довольно длинное перечисление составных частей клетки. Если речь идет об учебнике ботаники, то фраза будет начинаться словами Типичная растительная клетка. .. Зоологи соответственно пишут о типичной животной клетке . Однако весьма вероятно, что типичной клетки вообще не существует это не более чем средняя статистическая величина, это такая же фикция, как, скажем, средний потребитель или средний читатель. Мельчайшие единицы живого, клетки, очень разнообразны существуют тысячи типов клеток в зависимости от объекта, функции, состояния, возраста и т. д. [c.194]


    Все приведенные выше данные дали основание предположить, чго субмикроскопические гранулы цитоплазмы являются основными структурными единицами живых организмов и что они обладают способностью к размножению [108, 109]. Величина и свойства этих гранул напоминают величину и свойства вирусов, и часто О чень трудно решить, имеем ли мы дело с вирусом или субклеточной гранулой [110]. В связи с этим, прежде чем перейти к обсуждению основного вопроса, т. е. вопроса о самовоспроизведении и, следовательно, о синтезе специфических белков живой клетки, необходимо дать краткий обзор современных данных о вирусах — самых маленьких из всех известных в настоящий момент живых единиц. [c.397]

    В 30-х годах прошлого века, в то самое время, когда разрабатывалось понятие о клетке как фундаментальной единице живого, первые исследования по химии питания показали, что основная масса живого вещества состоит из трех типов веществ липидов, углеводов и белков. Липиды представляют собой соединения, лишь очень слабо растворимые в воде, но обычно растворимые в органических растворителях, например в хлороформе или этаноле. Типичный липид состоит из молекулы глицерина, три гидроксильные группы которого соединены эфирными связями с жирными кислотами. Жирные кислоты представляют собой длинные цепи атомов углерода (от 3 до 27) с гидроксильной группой на конце. Именно длинные цепи жирных кислот обусловливают нерастворимость липидов в воде. [c.36]

    Наиболее очевидная единица живой материи-организм. У одноклеточных организм-это клетка многоклеточный организм состоит из множества взаимозависимых клеток, и большинство их за время жизни организма отмирает и замещается другими. Элементарной единицей [c.72]

    Многоклеточное растение возникает из одной оплодотворенной яйцеклетки. Следовательно, клетка — особая единица, обладающая всеми свойствами живого и передающая их из поколения в поколение. Условно называя клетку единицей, не следует забывать, что она характеризуется весьма сложной химической и структурной организацией. Между растительными и животными организмами существует глубокое принципиальное различие, связанное с особенностями их клеточной структуры. Так, зеленые растения благодаря хлоропластам могут поглощать солнечную энергию, превращать ее в химическую и запасать в виде углеводов и в макроэргических связях молекул аденозинтрифосфорной кислоты (АТФ), к чему не приспособлены клетки животных. [c.11]

    Цитологический метод используется для изучения клетки как основной единицы живой материи. Исследование строения хромосом вместе с гибридологическим анализом лежит в основе цитогенетики. [c.18]

    Структурной единицей живых систем является клетка, поэтому можно дать и другое определение биохимия как наука изучает химические компоненты живых клеток, а также реакции и процессы, в которых они участвуют. Согласно этому определению, биохимия охватывает широкие области клеточной биологии и всю молекулярную биологию. [c.10]

    Фактор индукции сопряженных реакций в клетке часто практически равен единице. Это возможно в результате того, что реакции протекают в присутствии высокоспецифичных катализаторов — ( ]ер.ментов, которые ускоряют стадию типа (VI.5) и (У1,7), ноне влияют на стадию (VI.6), скорость которой в мягких условиях живой клетки намного меньше скорости катализированных стадий. [c.315]

    До того как были расшифрованы загадки строения и функционирования нуклеиновых кислот, проблемы воспроизведения живых организмов и передачи наследственных признаков в живых организмах биологическая наука связывала с понятиями хромосома и ген . Термин хромосома означал такую структурную единицу в ядре клетки, которая являлась носителем наследственной информации. Под термином ген понимали часть хромосомы , которая контролирует передачу отдельных характерных наследственных признаков цвет глаз, цвет волос и т. д. [c.533]

    Мембраны могут принадлежать к четырем классам. Некоторые из них сравнительно инертны в электрическом отношении, как, например, мембраны из ацетата целлюлозы, используемые для опреснения воды за счет обратного осмоса. К этому же классу можно отнести пористый стеклянный диск. Ионообменные мембраны имеют заряженные группы, связанные с матрицей мембраны [13]. Следовательно, они стремятся вытеснить ионы того же заряда, что и связанный. Так, в катионообменных смолах числа переноса анионов малы. Такие мембраны используются для опреснения воды путем электродиализа. Третий класс содержит стекла, керамику и твердые электролиты [14, 15]. Стеклянная мембрана, в которой число переноса ионов водорода в области изменения химических потенциалов равно единице, применяется для создания электрода, который по существу обратим по ионам водорода, подобно водородному электроду. Такие электроды используются при измерении pH, поскольку они удобнее водородных электродов. Интересный класс составляют биологические мембраны [16, 17], которые стали предметом обстоятельных исследований того, как живые клетки транспортируют вещества и как они генерируют нервные импульсы. [c.163]


    Митохондрии — Полноценные функциональные структурные единицы, они содержат все необходимые для выполнения их функций ферменты и вещества. Выделенные из клеток митохондрии при помещении в соответствующие условия способны нормально функционировать, если их структура не нарушена. Продолжительность жизни митохондрий около 10 дней, и в живой клетке постоянно идет их синтез. [c.31]

    Нуклеиновые кислоты способны образовывать комплексы с некоторыми белками, обладающими основными свойствами, причем подобные комплексы ведут себя как функциональные единицы. ДНК обычно образует комплексы с протаминами и гисто-нами. Вирусы также можно считать комплексами ДНК или РНК с определенными белками. Размножение вирусов происходит только в живых клетках хозяина. Нуклеиновая кислота вируса определяет его наследственные свойства, а белковая оболочка — тип клеток, заражаемых данным вирусом. Например, вирус полиомиелита заражает только человека и обезьяну, но, выделив из него РНК, можно инфицировать ею также клетки мышей и куриных эмбрионов. В состав многих клеток входят рибосомы — частицы, состоящие из РНК и белка, которые играют важную роль в синтезе белков. Ниже мы остановимся на каждом из этих нуклеопротеидов подробнее, а в конце главы рассмотрим роль нуклеиновых кислот при синтезе белка. [c.357]

    В то время как журнал, в котором Мендель опубликовал свои результаты, пылился на полках приблизительно 120 библиотек (о которых нам известно, что они его получали), к проблеме механизма наследственности подобрались с другого конца. Примерно за 30 лет до опубликования статьи Л1енделя уже установилось понятие о клетке как об основной единице живого. Что же касается различных элементов, из которых построена клетка, то они были обнаружены только во времена Менделя в результате усовершенствования конструкции микроскопов и применения красителей, специфически окрашивающих различные компоненты клетки в характерные для них цвета. Первым достижением науки о структуре и функции клетки — цитологии — было открытие того, что клетка состоит из двух разных областей — центрального ядра и периферической цитоплазмы. Ядро отграничено от цитоплазмы ядерной мембраной. Затем было обнаружено, что ядро само состоит из двух морфологически различных частей гранулярной области, хроматина, который и нтенсивно окрашивается определенными красителями, и ядрышка, к оторое этими красителями не окрашивается. Что касается цитоплазмы, тов ней были обнаружены хорошо различимые органеллы, такие, как ц ентриоли и вакуоли. В результате к концу XIX в. было выяснено общее строение клетки в том виде, как она изображена на фиг. 4. [c.18]

    Современные живые клетки обладают сложной, высокоорганизованной системой реакций, катализируемых ферментами. Специализированные компоненты клеток улавливают солнечную энергию и превращают ее в энергию химических связей, запасаемую в форме АГФ, глюкозы и подобных им соединений. Другие клетки способны расщеплять эти соединенил и использовать образующуюся энергию для поддержания своей внутренней целостности и для роста. Влолне вероятно, чго простейшие протоклетки не имели интегрированных систем биохимических реакций, аналогичных, тем которые сущесгвуюг в современных клетках. Скорее всего эти первичные развивающиеся единицы живой материи использовали для поддержания своей структуры вещества, которые поставлялись в результате простых реакций при действии. малоэффективных катализаторов. [c.263]

    Подсчитать клетки микроорганизмов под микроскопом можно, используя счетные камеры, капилляры Перфильева, препараты фиксированных и окрашенных клеток, приготовленные на предметных стеклах или мембранных фильтрах. Перечисленные методы позволяют определить обихее количество клеток в единице объема. Следует помнить, что подсчитываются все клетки, как живые, так и мертвые. Основное ограничение большинства указанных методов — необходимость довольно высоких концентраций клеток в единице исследуемого субстрата. [c.117]

    Химический состав клетки. Перейдем теперь от данных, характеризующих химический состав живого вещества в целом, к рассмотрению содержания важнейших химических соединений в мельчайщей структурной единице живых организмов клетке. Примером может служить простейшая живая система— бактериальная клетка (табл. 1). [c.18]

    Если перейти от рассмотрения обмена веществ в масштабе живого вещества всей планеты к оценке его роли в мельчайшей единице живого—клетке, то здесь еще более ярко выступает значение обменных процессов в явлениях жизни. Клетка, имеющая согласно современным представлениям (см. рис. 3) сложнейшую внутреннюю организацию, является средоточением нескольких тысяч различных веществ. В простейшей бактериальной клетке (см. табл. 1) находится около 300 млн. молекул органических соединений примерно [c.180]

    В 1839 г. немецкий зоолог Т.Шванн, обобщив собственные экспериментальные данные и результаты других ученых, сформулировал концепцию, известную в настоящее время как клеточная теория. Согласно клеточной теории 1) клетка является основным элементом жизни 2) любые организмы состоят из одной или многих клеток. Действительно, несмотря на колоссальное разнообразие живых существ, различающихся размером (см. табл. на с. 14), формой, средой обитания, способом передвижения, энергообеспечения и т.д., основу их морфофункциональной организации составляют клетки. Р. Вирхов в 1855 г. добавил к этим двум постулатам фундаментальное положение Отп15 се11и1а е се11и1ае — Всякая клетка от клетки . Иными словами, третье положение клеточной теории гласит, что все клетки образуются только в результате деления других клеток. Современное содержание клеточной теории может быть кратко сформулировано следующим образом основной структурной и функциональной единицей живых организмов является клетка. [c.13]

    В многочисленных исследованиях обращалось внимание на существование зависимости между содержанием отдельных компонентов гемицеллюлоз и стадиями развития растительных тканей. Так, было обнаружено, что относительное содержание пентозанов в стеблях однолетних растений — ячменя [14], овса, гороха, бобов [15], ваточника [16], ржи [17], а также бамбука [18], гвайулы [19], тростника [20] с возрастом непрерывно увеличивается. Этот вывод часто используется для оценки качества растительного сырья для производства фурфурола. Однако для характеристики процессов, протекающих при образовании клеточных стенок растений, этот вывод неприменим. Объясняется это тем, что в молодых тканях в больших количествах присутствуют водорастворимые низкомолекулярные компоненты (сахара, пектины и др.), которые с возрастом исчезают. Поэтому для объективной оценки изменений химического состава клеточных стенок в процессе их роста необходимо измерять абсолютные количества отдельных компонентов, входящих в состав клеточных стенок, в пересчете на единицу внутренней, поверхности клеток или на единицу объема живой ткани [21]. Позднее было предложено вести расчет количества прирастающих компонентов на одну клетку [22] или на участок живой ткани, не [c.308]

    Но преаде чем развивать тезис о важности "надежностного" подхода для анализа устойчивости биосистем, проведем некоторую формалиэащш представлений о структуре и метаболизме клетки как элементарной морфологической и функциональной единицы живого. Это поможет рассмотрению элементов теории надежности и анализу поведения клетки в экстремальных условиях с позиций синергетики (теории развивающихся систем). Подходы последней в настоящее время используют как наиболее общую теоретическую основу для изучения динамических свойств любых природных систем, включая биологические.  [c.13]

    Сопряженные реактцш в клетке идут часто с факторами индукции, практически равными единице. Это становится возможным в результате того, что эти реакции катализируются высоко специфичными катализаторами — ферментами, которые катализируют стадии типа (VI.4) и (VI.6), но не катализируют стадию (VI.5), которая в мягких условиях живой клетки протекает со скоростью, намного меньшей скорости катализированных стадий. [c.251]

    Полимеры можно определить как химические соединения, молекулы которых обладают высокой молекулярной массой и состоят из достаточно большого числа повторяющихся звеньев (химических группировок, мономерных единиц и т. п.). Биополимеры (в отличие от синтетических полимеров) образуются в процессе биосинтеза в клетках живых организмов они чаще всего рассматриваются в качестве полимерных субстратов при изучении действия ферментов-деполимераз. [c.6]

    Клетки являются обязательными структурными единицами всех известных живых организмов. Этот принцип был сформулирован в 1837—1839 гг. Матиасом Шлейденом и Теодором Шванном. Он является основным положением клеточной теории, одной из наиболее фундаментальных теорий биологии. В 1855 г. она была дополнена другим правилом (законом), постулированным Рудольфом Вирховом, а именно каждая клетка образуется только из клетки. [c.20]

    Во-вторых, для живой клетки такое огромное разнообразие возможных структур, включающих считанные единицы мономерных остатков, означает гигантские информационные возможности, совершенно несопоставимые по мощности с возможностями такого классического информационного материала, как последовательность нуклеотидных звеньев в нуклеиновых кислотах. Вспомним трехбуквенный генетический код позволяет построить из четырех основных природных нуклеотидов всего 64 слова , тогда как из восьми гексоз (а разнообразие природных моносахаридов гораздо больше) уже можно составить 1 645 056 трисахаридных слов .  [c.25]

    Исследования воздействия излучения на живую клетку насчитывают значительно более долгую историю, чем изучение его действия на синтетические полимеры. С точки зрения благополучия человечества и интересов науки первая область действительно более важна. Но обе эти области знания базируются на одних и тех же основных принципах, связаны, по-видимому, с одними и теми же основными реакциями и фактически представляют собой одно целое. И здесь и там задача заключается в том, чтобы выяснить, как происходят при облучении сшивание полимерных цепей, их деструкция и ряд других реакций. В живой клетке мы имеем дело главным образом с молекулами протеинов и нуклеиновых кислот. Строение и состав этих полимеров в общем виде нам известны, но наиболее важные вопросы до сих пор ускользают от нашего понимания. До настоящего времени нам неизвестно (за исключением единственного случая с инсулином) расположение структурных единиц — аминокислот и нуклеозидов. Еще меньше мы знаем о том, как действует на них излучение и каким образом инициированные излучение.м ре акции вызывают в организме явление лучевой болезни, стимулируют разрушение тканей и их рост (может иметь место и то и другое) и мутации генов. Непонятным и весьма важным является вопрос о том, как малые дозы облучения, недостаточные для того, чтобы вызвать заметные эффекты в большинстве полимеров in vitro, могут создавать в клетке или в организме в целом большие изменения, приводящие к их гибели. Эти вопросы приобрели большое значение уже с момента открытия в 1895 г. рентгеновских лучей и в 1896 г. радиоактивности (Веккерель) [c.8]

    Возможна грубая, условная оценка коли ства информации, содержащейся в живом организме. По Блюменфельду основное количество информации в человеческом ор/анизме определяется упорядоченным расположением аминокислбтных остатков в 7 кг белков, чему соответствует 3 10 остаткой. Это дает 1,3 10 бит. Другие вклады значительно меньше 150 г ДНК, содержащимся в человеческом организме, отвечает 6 10 бит, упорядоченному расположению 10 клеток — 4 10 бит и упорядоченному расположению 10 молекул биополимеров в клетке — всего лишь 2,6 10 бит. Белковая информация очень мала в термодинамической мере 1,3-10 к In 2 =1,3 10 Дж/К 300 кал/К. В энтропийных единицах упорядоченность живого организма заведомо мала, она значительно меньше упорядоченности куска горной породы той же массы уже потому, что организм содержит жидкости. [c.306]

    Радиационная безопасность. Все типы излучения (а, Р и у) оказывают вредное воздействие на живые организмы. Количественной мерой излучения является доза ионизирующего излучения. В зависимости от характера облучения различают несколько видов доз ионизирующего излучения. Экспозиционная доза - это мера ионизации воздуха под действием облучения у-квантами или рентгеновским иэлучением. Внесистемная единица - рентген (Р) соответствует образованию 2,08 10 пар ионов в 1 см воздуха при О °С и 760 мм рт. ст. При одном просвечивании грудной клетки на нас воздействует приблизительно 0,1 Р. [c.390]

    Все известные живые организмы состоят из клеток и продуктов их метаболизма. Это в 1838 г впервые доказали М. Шлейден и Т. Шванн, которые постулировали, что растительные и животные организмы построены из клеток, рас-положенньгх в определенном порядке. Спустя 20 лет Р. Вирхов буквально в нескольких словах сформулировал основы клеточной теории, указав, что все живые клетки возникают из предшествующих живых клеток. В дальнейшем клеточная теория развивалась и дополнялась по мере совершенствования методов познания. Каждая клетка является обособленной функциональной единицей, имеющей ряд специфических особенностей, в зависимости от ее природы. Микроорганизмы представлены отдельными клетками или их колониями, а многоклеточные организмы, например животные или высшие растения, состоят из миллиардов клеток, соединенных друг с другом. Клетка представляет собой своеобразную фабрику, на которой осуществляются многообразные и согласованные химические процессы. Как и на реальной фабрике, в клетке имеется центр управления, участки контроля за теми или иными реакциями, регуляторные механизмы. В клетку также поступает сырье, которое перерабатывается в готовую продукцию, и отходы, которые выбрасываются из клетки. [c.11]

    Во второй статье Введенский перечисляет основные свойства живых существ —их приспособляемость к изменяющимся условиям, изменчивость, целесообразность, наследственность и другие, которые нельзя объяснить, исходя лишь из законов физики и химии. Физиологу, когда он экспериментирует над отдельными клетками, тканями или органами следует всегда помнить, что он имеет дело с живыми единицами, поставленными в своей деятельности в условия, общие для всех живых организмов , он должен осветить свои соображения общими биологическими указаниями 1 . Одной из существенных задач физиологии Вве- денский считал выяснение явлений приспособляемости живых организмов, для которой механическое воззрение на жизнь не дает, конечно, решительно никакой руководящей идеи Для правильного понимания и объяснения явлений приспособляемости к изменившимся условиям необходимо собоать более обширный сравнительно-физиологический материал и изучить разносторонее действие раздражителей на живые образования Только сравнительно-физиологическое изучение органа и его функций может внести ясность в понимание вопроса о степени функционального совершенства и целесообразности физиологического аппарата. Введенский высказывает мысль, что специфическая деятельность тканей и органов, формирующаяся под влиянием раздражений, проявляется лишь после того, как их морфологическая дифференцировка будет в основном завершена. Как справедливо отмечал Введенский, сравнительными исследованиями физиологи в то время занимались очень мало. Физиология долгое время была оторвана в своем развитии от других биологических наук. До середины XIX в., т. е. до обособления в самостоятельную науку физиология, будучи тесно связанной с анатомией и медициной, преследовала лишь практические цели. Опыты на животных ставились только в силу необходимости иметь модели, с которых с известным основанием можно было бы переносить выводы на человека. К моменту выхода в свет Происхождения видов Дарвина, развитие физиологии продолжалось по-прежнему в отрыве ог общебиологических проблем. Причиной этого Введенский считал господство в физиологии механических представлений. [c.201]

    Моделирование процессов, протекающих в этих реакторах, затруднено, поскольку информация о поведении псевдоожиженного биослоя малодоступна. Вопрос осложняется наличием третьей фазы. Однако, несмотря на эти трудности, реакторы с псевдоожиженным слоем соединяют преимущества реакторов полного смешения и реакторов с неподвижным слоем, не имея большинства их недостатков. К преимуществам следует отнести хорошее перемешивание и параметры массопереноса. При работе в такой трехфазной системе увеличивается взаимодействие газ — жидкость и скорость удаления газа по сравнению с неподвижным слоем, что является важной характеристикой при работе с живыми клетками. Это позволяет обеспечить больший объемный коэффициент переноса кислорода и избежать застаивания газа. Плотность клеток на единицу объема реактора в псевдоожиженном слое потенциально ниже, чем в неподвижном слое, из-за упаковки. Однако общая производительность в реакторе с псевдоожиженным слоем может быть выше благодаря условиям эксплуатации. [c.178]

    Если в биохимии и имеются аналогичные явления и процессы, которые могли бы быть нам полезны, то, конечно, их можно встретить в области обмена липидов и углеводов, который все более интенсивно и глубоко изучается. Мы знаем, что в обмене липидов главная роль принадлежит ацетилкоферменту А. Эта основная единица, коль скоро она уже синтезирована, действует как первичный донор в реакциях ацетилирования и как акцептор ацетильных групп, образующихся в процессе обмена липидов. Недавно обнаружен белок, служащий переносчиком ацильной группы [25]. Получены данные, что синтез, окисление и восстановление высокомолекулярных жирных кислот с четным числом углеродных атомов происходят таким образом, что растущая углеродная цепь никогда не освобождается, оставаясь связанной с белком-иереносчиком. Руководствуясь этими фактами, мы можем предсказать, что вслед за начальной стадией восстановления сульфата в сульфит и нитрата в нитрит будет происходить образование промежуточных продуктов, связанных с белком. Дальнейшее восстановление этих промежуточных продуктов — их включение в аминокислоты и другие многочисленные соединения серы и азота, входящие в состав живой клетки,— будет происходить в соответствии с законами сохранения энергии химических связей и с общими закономерностями переноса грунп. [c.286]

    Нетрудно найти примеры таких зон, когда речь идет о человеке и об изменении окружающего мира, отмечающем его целеустремленную деятельность. Даже модели мозга типа счетных машин обладают в глазах их творцов этой особенностью, создавая вокруг себя зону организации . Вполне очевидно, что различные формы высшей интеллектуальной деятельности характеризуются громадной способностью к созданию зон организации. Образование в результате действия организационного потенциала зоны организации облегчает живым клеткам формирование их собственной структуры из менее организованных материалов. Все механизмы клетки, действие которых направлено на саморепродукцию или развитие, функционируют так, что на каждом этапе всей последовательности реакций организационная работа минимальна. Синтез белка осуществляется только тогда, когда и пространственные и энергетические условия таковы, что ферментному аппарату остается лишь замыкать цепочки аминокислот. Следовательно, весь этот сложнейший механизм возник и усовершенствовался для того , чтобы поддерживать уровень своей организации за счет минимальной организационной работы. На языке термодинамики это и должно было бы означать, что аппараты клетки стремятся приблизиться к стационарному состоянию с минимальной продукцией энтропии за единицу времени, но организационная работа явно не имеет простого термодинамического эквивалента. [c.11]


Смотреть страницы где упоминается термин Клетка единица живого: [c.168]    [c.19]    [c.19]    [c.352]    [c.1788]    [c.205]    [c.470]    [c.182]    [c.470]    [c.6]    [c.86]    [c.501]   
Биология с общей генетикой (2006) -- [ c.20 ]




ПОИСК







© 2024 chem21.info Реклама на сайте